Displaying all 3 publications

Abstract:
Sort:
  1. Wong MN, Joshi P, Sim KH
    Pediatr Cardiol, 2009 Jan;30(1):85-6.
    PMID: 18663510 DOI: 10.1007/s00246-008-9287-z
    A 10-month-old boy was referred for tachypnea and heart murmur. An echocardiogram showed unexplained left heart dilation without evidence of an intracardiac shunt. A 64-slice computed tomographic contrast-enhanced angiography showed a large tortuous anomalous artery arising from the descending thoracic aorta and supplying the lower lobe of the left lung. The venous return into the left atrium was normal. The affected lobe had normal lung parenchyma, and its bronchial tree was connected normally with the left main bronchus. Hence, it was not a sequestrated lobe. The boy underwent surgical lobectomy of the left lower lobe and improved. Anomalous arterial supply of a lobe without sequestration of its bronchial tree is a rare pathologic entity. It also is a very rare cause of congestive heart failure in children. Computed tomographic angiography was a useful tool for evaluation of the intrathoracic anomalous vessel in this case.
  2. Joshi P, Okada T, Miyabayashi K, Miyake M
    Anal Chem, 2018 May 15;90(10):6116-6123.
    PMID: 29613775 DOI: 10.1021/acs.analchem.8b00247
    Organically (octyl amine, OA) surface modified electrocatalyst (OA-Pt/CB) was studied for its oxygen reduction reaction (ORR) activity via dc methods and its charge and mass transfer properties were studied via electrochemical impedance spectroscopy (EIS). Comparison with a commercial catalyst (TEC10V30E) with similar Pt content was also carried out. In EIS, both the catalysts showed a single time-constant with an emerging high-frequency semicircle of very small diameter which was fitted using suitable equivalent circuits. The organically modified catalyst showed lower charge-transfer resistance and hence, low polarization resistance in high potential region as compared to the commercial catalyst. The dominance of kinetic processes was observed at 0.925-1.000 V, whereas domination of diffusion based processes was observed at lower potential region for the organic catalyst. No effect due to the presence of carbon was observed in the EIS spectra. Using the hydrodynamic method, higher current penetration depth was obtained for the organically modified catalyst at 1600 rpm. Exchange current density and Tafel slopes for both the electrocatalysts were calculated from the polarization resistance obtained from EIS which was in correlation with the results obtained from dc methods.
  3. Schaefer N, Rotermund C, Blumrich EM, Lourenco MV, Joshi P, Hegemann RU, et al.
    J Neurochem, 2017 Jun 20.
    PMID: 28632905 DOI: 10.1111/jnc.14107
    One of the most intriguing features of the brain is its ability to be malleable, allowing it to adapt continually to changes in the environment. Specific neuronal activity patterns drive long-lasting increases or decreases in the strength of synaptic connections, referred to as long-term potentiation and long-term depression, respectively. Such phenomena have been described in a variety of model organisms, which are used to study molecular, structural, and functional aspects of synaptic plasticity. This review originated from the first International Society for Neurochemistry (ISN) and Journal of Neurochemistry (JNC) Flagship School held in Alpbach, Austria (Sep 2016), and will use its curriculum and discussions as a framework to review some of the current knowledge in the field of synaptic plasticity. First, we describe the role of plasticity during development and the persistent changes of neural circuitry occurring when sensory input is altered during critical developmental stages. We then outline the signaling cascades resulting in the synthesis of new plasticity-related proteins, which ultimately enable sustained changes in synaptic strength. Going beyond the traditional understanding of synaptic plasticity conceptualized by long-term potentiation and long-term depression, we discuss system-wide modifications and recently unveiled homeostatic mechanisms, such as synaptic scaling. Finally, we describe the neural circuits and synaptic plasticity mechanisms driving associative memory and motor learning. Evidence summarized in this review provides a current view of synaptic plasticity in its various forms, offers new insights into the underlying mechanisms and behavioral relevance, and provides directions for future research in the field of synaptic plasticity. Read the Editorial Highlight for this article on doi: 10.1111/jnc.14102.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links