Displaying all 5 publications

Abstract:
Sort:
  1. Nolan D, Stephens F, Crockford M, Jones JB, Snow M
    J Fish Dis, 2015 Feb;38(2):187-95.
    PMID: 24475941 DOI: 10.1111/jfd.12222
    This report documents an emerging trend of identification of Megalocytivirus-like inclusions in a range of ornamental fish species intercepted during quarantine detention at the Australian border. From September 2012 to February 2013, 5 species of fish that had suffered mortality levels in excess of 25% whilst in the post-entry quarantine and had Megalocytivirus-like inclusion bodies in histological sections were examined by PCR. The fish had been imported from Singapore, Malaysia and Sri Lanka. Ninety-seven of 111 individual fish from affected tanks of fish tested were positive for the presence of Megalocytivirus by PCR. Sequence analysis of representative PCR products revealed an identical sequence of 621 bp in all cases which was identical to a previously characterized Megalocytivirus (Sabah/RAA1/2012 strain BMGIV48). Phylogenetic analysis of available Megalocytivirus major capsid protein (MCP) sequences confirmed the existence of 3 major clades of Megalocytivirus. The virus detected in this study was identified as a member of Genotype II. The broad host range and pathogenicity of megalocytiviruses, coupled to the documented spread of ornamental fish into the environment, render this a significant and emerging biosecurity threat to Australia.
  2. Mohd-Agos S, Mohd-Husin N, Zakariah MI, Yusoff NAH, Wahab W, Jones JB, et al.
    Trop Biomed, 2021 Sep 01;38(3):387-395.
    PMID: 34608112 DOI: 10.47665/tb.38.3.064
    This study was carried out in order to identify acanthocephalan species complexes, based on morphological variability, infecting Barbonymus schwanenfeldii from Lake Kenyir, Terengganu, Malaysia. Acanthocephala were fixed in ethanol, stained with aceto-carmine and studied morphologically by using a light microscope. Variation in morphological traits such as proboscis, proboscis receptacle, egg, testes shape and location, number of hooks and cement gland has been traditionally used to diagnose the acanthocephalans species but the delimitations between closely related species are still confusing and are always questionable among taxonomists. Molecular analysis was used for support the identification. Morphological variability prospecting reveals the presence of three different new species complexes from the subgenus Acanthosentis by referring published taxonomic keys. These new species may be distinguished from the other 46 described species of Acanthosentis by having six unique structures: the presence of an anterior parareceptacle structure (PRS); vaginal sleeve structure; a paired lateral, cone-shaped, muscular jacket surrounding the vagina; alternating pattern and size of proboscis hooks, variation in proboscis size and shape; the presence of the circular collar ring around the neck between the proboscis and trunk and lastly the presence of a muscular-like structure attached to the collar ring on the proboscis. These acanthocephalans found in the intestine of B. schwanenfeldii in Kenyir Lake Malaysia represent new species, named Acanthogyrus ( Acanthosentis) kenyirensis n.sp., A. ( A.) terengganuensis n.sp. and A. ( A.) tembatensis n. sp.
  3. Saad N, Olmstead JW, Jones JB, Varsani A, Harmon PF
    Plants (Basel), 2021 Oct 14;10(10).
    PMID: 34685980 DOI: 10.3390/plants10102172
    Blueberry (Vaccinium spp.) plants are exposed to existing and emerging viruses as a result of expanding acreage of blueberry plantations across the world, primarily in North America. Since blueberry is cultivated in areas where there are wild Vaccinium spp., there is increasing risk of virus movement between wild and cultivated blueberries. This is theoretically possible because viruses can spread from commercial cultivars to native species and vice versa causing the spread of existing and new viruses. The occurrence of these viruses in blueberry can be devastating to the industry considering the cost for cultivation and production of this perennial crop. However, the advent of high-throughput sequencing and bioinformatic sequence analysis have allowed for rapid identification of known and novel viruses in any crop including blueberry, thus facilitating proper intervention in response to serious viral diseases. In this paper, we aim to focus on the current status of known and novel viruses emerging in blueberry worldwide, which may impact the blueberry industry.
  4. Ference CM, Gochez AM, Behlau F, Wang N, Graham JH, Jones JB
    Mol Plant Pathol, 2018 Jun;19(6):1302-1318.
    PMID: 29105297 DOI: 10.1111/mpp.12638
    Taxonomic status: Bacteria; Phylum Proteobacteria; Class Gammaproteobacteria; Order Xanthomonadales; Family Xanthomonadaceae; Genus Xanthomonas; Species Xanthomonas citri ssp. citri (Xcc). Host range: Compatible hosts vary in their susceptibility to citrus canker (CC), with grapefruit, lime and lemon being the most susceptible, sweet orange being moderately susceptible, and kumquat and calamondin being amongst the least susceptible. Microbiological properties: Xcc is a rod-shaped (1.5-2.0 × 0.5-0.75 µm), Gram-negative, aerobic bacterium with a single polar flagellum. The bacterium forms yellow colonies on culture media as a result of the production of xanthomonadin. Distribution: Present in South America, the British Virgin Islands, Africa, the Middle East, India, Asia and the South Pacific islands. Localized incidence in the USA, Argentina, Brazil, Bolivia, Uruguay, Senegal, Mali, Burkina Faso, Tanzania, Iran, Saudi Arabia, Yemen and Bangladesh. Widespread throughout Paraguay, Comoros, China, Japan, Malaysia and Vietnam. Eradicated from South Africa, Australia and New Zealand. Absent from Europe.
  5. Saad N, Olmstead JW, Varsani A, Polston JE, Jones JB, Folimonova SY, et al.
    Viruses, 2021 Jun 18;13(6).
    PMID: 34207047 DOI: 10.3390/v13061165
    Southern highbush blueberry (interspecific hybrids of Vaccinium corymbosum L.) is cultivated near wild V. corymbosum as well as closely related species in Florida, USA. The expansion of blueberry cultivation into new areas in Florida and deployment of new cultivars containing viruses can potentially increase the diversity of viruses in wild and cultivated V. corymbosum. In this study, viral diversity in wild and cultivated blueberries (V. corymbosum) is described using a metagenomic approach. RNA viromes from V. corymbosum plants collected from six locations (two cultivated and four wild) in North Central Florida were generated by high throughput sequencing (HTS) and analyzed using a bioinformatic analysis pipeline. De novo assembled contigs obtained from viromes of both commercial and wild sites produced sequences with similarities to plant virus species from a diverse range of families (Amalgaviridae, Caulimoviridae, Endornaviridae, Ophioviridae, Phenuiviridae, and Virgaviridae). In addition, this study has enabled the identification of blueberry latent virus (BlLV) and blueberry mosaic associated ophiovirus (BlMaV) for the first time in Florida, as well as a tentative novel tepovirus (blueberry virus T) (BlVT) in blueberry. To the best of our knowledge, this is the first study that compares viral diversity in wild and cultivated blueberry using a metagenomic approach.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links