METHODS: In this study the nested multiplex malaria PCR was redesigned, targeting the 18S rRNA gene, to identify the fifth human Plasmodium species, Plasmodium knowlesi, together with the other human Plasmodium (Plasmodium falciparum, Plasmodium vivax, Plasmodium ovale and Plasmodium malariae) by amplified fragment size using only two amplification processes and including an internal reaction control to avoid false negatives.
RESULTS: The technique was validated with 91 clinical samples obtained from patients with malaria compatible symptoms. The technique showed high sensitivity (100%) and specificity (96%) when it was compared to the reference method employed for malaria diagnosis in the Instituto de Salud Carlos Ⅲ and a published real-time PCR malaria assay.
CONCLUSIONS: The technique designed is an economical, sensitive and specific alternative to current diagnosis methods. Furthermore, the method might be tested in knowlesi-malaria endemic areas with a higher number of samples to confirm the quality of the method.
METHODS: In 2013, a total of 1744 dried blood spots (DBS) were obtained from residents of 8 longhouses who appeared healthy. Subsequently, 251 venous blood samples were collected from residents of 2 localities in 2014 based on the highest number of submicroscopic cases from prior findings. Thin and thick blood films were prepared from blood obtained from all participants in this study. Microscopic examination were carried out on all samples and a nested and nested multiplex PCR were performed on samples collected in 2013 and 2014 respectively.
RESULTS: No malaria parasites were detected in all the Giemsa-stained blood films. However, of the 1744 samples, 29 (1.7%) were positive for Plasmodium vivax by PCR. Additionally, of the 251 samples, the most prevalent mono-infection detected by PCR was Plasmodium falciparum 50 (20%), followed by P. vivax 39 (16%), P. knowlesi 9 (4%), and mixed infections 20 (8%).
CONCLUSIONS: This research findings conclude evidence of Plasmodium by PCR, among samples previously undetectable by routine blood film microscopic examination, in local ethnic minority who are clinically healthy. SMM in Belaga district is attributed not only to P. vivax, but also to P. falciparum and P. knowlesi. In complementing efforts of programme managers, there is a need to increase surveillance for SMM nationwide to estimate the degree of SMM that warrant measures to block new transmission of malaria.