Displaying all 2 publications

Abstract:
Sort:
  1. Hashemi Moosavi M, Mousavi Khaneghah A, Javanmardi F, Hadidi M, Hadian Z, Jafarzadeh S, et al.
    Ultrason Sonochem, 2021 Nov;79:105755.
    PMID: 34562735 DOI: 10.1016/j.ultsonch.2021.105755
    Innovative technologies for the pasteurization of food products have increased due to the global demand for higher-quality food products. In this regard, the current article aimed to provide an overview regarding the latest research on US application in the decontamination of fungi in food products and highlight the parameters influencing the effectiveness of this method. Therefore, the related article with inactivation of fungi and mycotoxins by ultrasound among last four years (2018-2021) by using terms such as 'mycotoxin,' 'inactivation,' 'ultrasound,' 'decontamination' among some international databases such as PubMed, Web of Science, Embase and Google Scholar" was retrieved. Ultrasound (US) is considered a non-thermal decontamination method for food products. In US, the release of energy due to the acoustic phenomenon destroys microorganisms. This technology is advantageous as it is inexpensive, eco-friendly, and does not negatively affect food products' food structure and organoleptic properties. The influence of the US on food structure and organoleptic properties dramatically depends on the intensity and energy density applied In addition, it can preserve higher levels of ascorbic acid, lycopene, and chlorophyll in sonicated food products. The treatment conditions, including frequency, intensity, duration, temperature, and processing pressure, influence the effectiveness of decontamination. However, US displays synergistic or antagonistic effects on bacteria, yeasts, molds, and mycotoxins when combined with other types of decontamination methods such as chemical and thermal approaches. Thus, further research is needed to clarify these effects. Overall, the application of US methods in the food industry for decreasing the microbial content of food products during processing has been applied. However, the use of US with other techniques needs to be studied further.
  2. Jabbari M, Barati M, Shabani M, Kazemian E, Khalili-Moghadam S, Javanmardi F, et al.
    Nutr Cancer, 2022 Jan 20.
    PMID: 35048753 DOI: 10.1080/01635581.2021.2009884
    Bioactive peptides (BPs) content of dairy products is suggested to be a significant ingredient for reducing breast cancer (BC) risk. There is no observational study regarding the correlation between BPs and the risk of chronic disease because BPs' content of food items has not been evaluated in any study. The goal of the current study was to assess the association of dairy-originated BPs with BC risk. One hundred thirty-four women with BC and 267 cancer-free controls were selected from referral hospitals in Tehran, Iran. The development of an in-silico model for estimation of the bioactive and digestion-resistant peptides content of dairy products was done in our previous research. The risk assessment for BPs and BC association was performed across the tertiles of the peptide's intake. Odds ratios (OR) were calculated by logistic regression. The negative association of all bioactive and digestion-resistant peptides except for peptides with high hydrophilicity and low bioactivity was seen in all models. In PR-negative subjects only the association of total dairy intake (OR: 0.61; 95% CI: 0.26-1.45; P for trend: 0.276), peptides with low bioactivity (OR: 0.40; 95% CI: 0.16-1.02; P for trend: 0.0.052), antidiabetic peptides (OR: 0.42; 95% CI: 0.17-1.05; P for trend: 0.0.062) and di-peptides (OR: 0.42; 95% CI: 0.17-1.05; P for trend: 0.0.062) were not significant in the final model. Also, no significant association between ER-negative subjects and total dairy intake (OR: 0.41; 95% CI: 0.16-1.07; P for trend: 0.0.068) was noted. Our findings deduced that milk-derived BPs negatively associate with the risk of ER/PR/HER2 negative BC among Iranian women.Supplemental data for this article is available online at https://doi.org/10.1080/01635581.2021.2009884.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links