Displaying all 2 publications

Abstract:
Sort:
  1. Jamaluddin NA, Mohamed A, Bakar SA, Ardyani T, Sagisaka M, Saito H, et al.
    Phys Chem Chem Phys, 2021 Sep 15;23(35):19313-19328.
    PMID: 34524298 DOI: 10.1039/d1cp02206g
    Previously, surfactant-assisted exfoliated graphene oxide (sEGO) formed with the triple-chain surfactant TC14 (sodium 1,4-bis(neopentyloxy)-3-(neopentylcarbonyl)-1,4-dioxobutane-2-sulfonate) was applied in wastewater treatment. The extent of dye-removal and the adsorption capacity of the sEGO formed with this triple-chain surfactant outperformed those of two other systems, namely, the di-chain version of TC14 (AOT14; sodium 1,2-bis-(2,2-dimethyl-propoxycarbonyl)-ethanesulfonate) and the single-chain surfactant sodium n-dodecylsulfate. In the present study, to further optimise the surfactant chemical structure, the sodium ion of TC14 was substituted with 1-butyl-3-methyl-imidazolium (BMIM) generating surfactant ionic liquids (SAILs; 1-butyl-3-imidazolium 1,4-bis(neopentyloxy)-3-(neopentyloxycarbonyl)-1,4-dioxobutane-2-sulfonate), hereafter denoted as BMIM-TC14. This SAIL, together with nanofibrillated kenaf cellulose (NFC), was used to electrochemically exfoliate graphite, yielding BMIM-TC14 sEGO/NFC composites. These highly hydrophobic polymer composites were then used for the removal of methylene blue (MB) from aqueous solution. 1H NMR spectroscopy was used to elucidate the structure of the synthesised SAILs. The morphologies of the resulting nanocomposites were investigated using Raman spectroscopy, field-emission scanning electron microscopy, and high-resolution transmission electron microscopy. Analysis using small-angle neutron scattering was performed to examine the aggregation behaviour of sEGO and custom-made SAILs. Zeta potential, surface tension, and dynamic light-scattering measurements were used to study the aqueous properties and colloidal stability of the suspension. Amongst the surfactants tested, BMIM-TC14 sEGO/NFC exhibited the highest MB adsorption ability, achieving 99% dye removal under optimum conditions. These results highlight the importance of modifying the hydrophilic moieties of amphiphilic compounds to improve the performance of sEGO/NFC composites as effective adsorbents for wastewater treatment.
  2. Jamaluddin NA, Mohamed A, Abu Bakar S, Ardyani T, Sagisaka M, Suhara S, et al.
    Phys Chem Chem Phys, 2020 Jun 14;22(22):12732-12744.
    PMID: 32462145 DOI: 10.1039/d0cp01243b
    The generation of surfactant-assisted exfoliated graphene oxide (sEGO) by electrochemical exfoliation is influenced by the presence of surfactants, and in particular the hydrophobic tail molecular-architecture. Increasing surfactant chain branching may improve the affinity for the graphite surfaces to provide enhanced intersheet separation and stabilisation of exfoliated sheets. The resulting sEGO composites can be readily used to remove of a model pollutant, the dye, methylene blue (MB), from aqueous solutions by providing abundant sites for dye adsorption. This article explores relationships between surfactant structure and the performance of sEGO for MB adsorption. Double-branched and highly branched triple-chain graphene-compatible surfactants were successfully synthesised and characterised by 1H NMR spectroscopy. These surfactants were used to produce sEGO via electrochemical exfoliation of graphite, and the sEGOs generated were further utilised in batch adsorption studies of MB from aqueous solutions. The properties of these synthesised surfactants were compared with those of a common single-chain standard surfactant, sodium dodecyl-sulfate (SDS). The structural morphology of sEGO was assessed using Raman spectroscopy and field emission scanning electron microscopy (FESEM). To reveal the links between the hydrophobic chain structure and the sEGO adsorption capacity, UV-visible spectroscopy, zeta potential, and air-water (a/w) surface tension measurements were conducted. The aggregation behaviour of the surfactants was studied using small-angle neutron scattering (SANS). The highly branched triple-chain surfactant sodium 1,4-bis(neopentyloxy)-3-(neopentylcarbonyl)-1,4-dioxobutane-2-sulfonate (TC14) displayed enhanced exfoliating efficiency compared to those of the single-and double-chain surfactants, leading to ∼83% MB removal. The findings suggest that highly branched triple-chain surfactants are able to offer more adsorption sites, by expanding the sEGO interlayer gap for MB adsorption, compared to standard single-chain surfactants.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links