Displaying all 18 publications

Abstract:
Sort:
  1. Gavai AK, Supandi F, Hettling H, Murrell P, Leunissen JA, van Beek JH
    PLoS One, 2015;10(3):e0119016.
    PMID: 25806817 DOI: 10.1371/journal.pone.0119016
    Predicting the distribution of metabolic fluxes in biochemical networks is of major interest in systems biology. Several databases provide metabolic reconstructions for different organisms. Software to analyze flux distributions exists, among others for the proprietary MATLAB environment. Given the large user community for the R computing environment, a simple implementation of flux analysis in R appears desirable and will facilitate easy interaction with computational tools to handle gene expression data. We extended the R software package BiGGR, an implementation of metabolic flux analysis in R. BiGGR makes use of public metabolic reconstruction databases, and contains the BiGG database and the reconstruction of human metabolism Recon2 as Systems Biology Markup Language (SBML) objects. Models can be assembled by querying the databases for pathways, genes or reactions of interest. Fluxes can then be estimated by maximization or minimization of an objective function using linear inverse modeling algorithms. Furthermore, BiGGR provides functionality to quantify the uncertainty in flux estimates by sampling the constrained multidimensional flux space. As a result, ensembles of possible flux configurations are constructed that agree with measured data within precision limits. BiGGR also features automatic visualization of selected parts of metabolic networks using hypergraphs, with hyperedge widths proportional to estimated flux values. BiGGR supports import and export of models encoded in SBML and is therefore interoperable with different modeling and analysis tools. As an application example, we calculated the flux distribution in healthy human brain using a model of central carbon metabolism. We introduce a new algorithm termed Least-squares with equalities and inequalities Flux Balance Analysis (Lsei-FBA) to predict flux changes from gene expression changes, for instance during disease. Our estimates of brain metabolic flux pattern with Lsei-FBA for Alzheimer's disease agree with independent measurements of cerebral metabolism in patients. This second version of BiGGR is available from Bioconductor.
  2. Harris JA, Beck NA, Niedziela CJ, Alvarez GA, Danquah SA, Afshar S
    Oral Maxillofac Surg, 2023 Sep;27(3):513-517.
    PMID: 35739365 DOI: 10.1007/s10006-022-01095-6
    PURPOSE: Social media use among oral and maxillofacial surgeons (OMSs) has grown in recent years, serving as an important resource for the dissemination of medical/surgical knowledge, research, education, diplomacy, and advocacy. However, no studies have attempted to characterize the global reach of social media in OMS.

    METHODS: This study examined the profile activity, content performance, and demographic characteristics of followers from a single OMS-related Instagram account. Variables assessed include the total number of followers since the account's inception, profile views over the selected time period, and unique media content posts, as well as likes, comments, saves, impressions, and reach for all media content posts. The top 45 countries, cities, and languages based on each follower's geolocation and user settings were also included.

    RESULTS: There were 9569 followers of which 6208 (64.9%) were listed as public accounts. Of the 6208 followers with public accounts, 2496 (40.2%) were female. The countries with the most followers included the United States (31.7%), India (12.5%), Malaysia (5.3%), Mexico (4.0%), and Pakistan (3.6%). The cities with the most followers included New York, New York (8.9%), Boston, Massachusetts (5.2%), Cairo, Egypt (4.3%), Santiago, Chile (3.7%), and Karachi, Pakistan (3.5%).

    CONCLUSION: OMS-related social media is uniquely positioned to facilitate global collaboration and augment the dissemination of surgical knowledge and expertise. This information is critical in understanding the distribution and demographics of the OMS workforce, trainees, and affiliates around the world.

  3. Poznanski RR, Cacha LA, Latif AZA, Salleh SH, Ali J, Yupapin P, et al.
    Biosystems, 2019 Sep;183:103982.
    PMID: 31195028 DOI: 10.1016/j.biosystems.2019.103982
    We have further developed the two-brains hypothesis as a form of complementarity (or complementary relationship) of endogenously induced weak magnetic fields in the electromagnetic brain. The locally induced magnetic field between electron magnetic dipole moments of delocalized electron clouds in neuronal domains is complementary to the exogenous electromagnetic waves created by the oscillating molecular dipoles in the electro-ionic brain. In this paper, we mathematically model the operation of the electromagnetic grid, especially in regard to the functional role of atomic orbitals of dipole-bound delocalized electrons. A quantum molecular dynamic approach under quantum equilibrium conditions is taken to illustrate phase differences between quasi-free electrons tethered to an oscillating molecular core. We use a simplified version of the many-body problem to analytically solve the macro-quantum wave equation (equivalent to the Kohn-Sham equation). The resultant solution for the mechanical angular momentum can be used to approximate the molecular orbital of the dipole-bound delocalized electrons. In addition to non-adiabatic motion of the molecular core, 'guidance waves' may contribute to the delocalized macro-quantum wave functions in generating nonlocal phase correlations. The intrinsic magnetic properties of the origins of the endogenous electromagnetic field are considered to be a nested hierarchy of electromagnetic fields that may also include electromagnetic patterns in three-dimensional space. The coupling between the two-brains may involve an 'anticipatory affect' based on the conceptualization of anticipation as potentiality, arising either from the macro-quantum potential energy or from the electrostatic effects of residual charges in the quantum and classical subsystems of the two-brains that occurs through partitioning of the potential energy of the combined quantum molecular dynamic system.
  4. Jack A, Mohd MA, Kamaruddin NN, Mohd Din LH, Hajri NA, Tengku Muhammad TS
    Saudi J Biol Sci, 2021 Dec;28(12):7105-7116.
    PMID: 34867013 DOI: 10.1016/j.sjbs.2021.08.003
    Acaudina molpadioides has been long used as traditional medicinal resources and reported to demonstrate various important bioactivities such as anticoagulation, antithrombosis, anti-hyperglycemia and anticancer. However, its lipid lowering activity is yet to be fully explored. Proprotein convertase subtilisin/kexin type 9 (PCSK9) is an enzyme that enhances the lysosomal degradation of hepatic low density lipoprotein receptor (LDLR) resulting in excessive accumulation of the plasma levels of LDL-cholesterols (LDL-C) which subsequently accelerate atherosclerosis. In the present study, A. molpadioides fractions were subjected to promoter-reporter luciferase assay to determine its role as PCSK9 inhibitors. It was found both fractions (EFA and EFB) reduced the transcriptional activity of PCSK9 promoter. Among the seven 5'end deletion constructs of PCSK9 promoter, fragments D1 (-1,711/-94), D3 (-709/-94) and D4 (-440/-94), were suppressed in the presence of both fractions whereas D2 (-1,214/-94), and, D6 (-351/-94) as well as D7 (-335/-94) were inhibited only by EFA and EFB, respectively. Further transcription factor binding sites prediction using MatInspector software discovered various potential cis-regulatory elements namely, PPAR, KLFs, RBPJ-kappa and SREBP that may potentially be involved in ameliorating the transcriptional activity of PCSK9. Immunofluorescence staining was used to evaluate the effects of both fractions on LDL-C and LDLR. Results showed that levels of LDL-C uptake in EFA-treated cells were 69.1% followed by EFB at 32.6%, as compared to untreated control after 24 h treatment. The LDLR protein distribution was induced by 62.41% and 32.2%, which corresponded to an increase in LDL-C uptake in both EFA and EFB treatment, respectively. Hence, the inhibition of PCSK9 by bioactive compounds in EFA and EFB could be another promising therapeutic agent in reducing the cholesterol levels and atherosclerosis by targeting PCSK9.
  5. Goossens ME, Isa F, Brinkman M, Mak D, Reulen R, Wesselius A, et al.
    Arch Public Health, 2016;74:30.
    PMID: 27386115 DOI: 10.1186/s13690-016-0140-1
    In 2012, more than 400,000 urinary bladder cancer cases occurred worldwide, making it the 7(th) most common type of cancer. Although many previous studies focused on the relationship between diet and bladder cancer, the evidence related to specific food items or nutrients that could be involved in the development of bladder cancer remains inconclusive. Dietary components can either be, or be activated into, potential carcinogens through metabolism, or act to prevent carcinogen damage.
  6. Permuth JB, Pirie A, Ann Chen Y, Lin HY, Reid BM, Chen Z, et al.
    Hum Mol Genet, 2016 08 15;25(16):3600-3612.
    PMID: 27378695 DOI: 10.1093/hmg/ddw196
    Rare and low frequency variants are not well covered in most germline genotyping arrays and are understudied in relation to epithelial ovarian cancer (EOC) risk. To address this gap, we used genotyping arrays targeting rarer protein-coding variation in 8,165 EOC cases and 11,619 controls from the international Ovarian Cancer Association Consortium (OCAC). Pooled association analyses were conducted at the variant and gene level for 98,543 variants directly genotyped through two exome genotyping projects. Only common variants that represent or are in strong linkage disequilibrium (LD) with previously-identified signals at established loci reached traditional thresholds for exome-wide significance (P  P≥5.0 ×10 -  7) were detected for rare and low-frequency variants at 16 novel loci. Four rare missense variants were identified (ACTBL2 rs73757391 (5q11.2), BTD rs200337373 (3p25.1), KRT13 rs150321809 (17q21.2) and MC2R rs104894658 (18p11.21)), but only MC2R rs104894668 had a large effect size (OR = 9.66). Genes most strongly associated with EOC risk included ACTBL2 (PAML = 3.23 × 10 -  5; PSKAT-o = 9.23 × 10 -  4) and KRT13 (PAML = 1.67 × 10 -  4; PSKAT-o = 1.07 × 10 -  5), reaffirming variant-level analysis. In summary, this large study identified several rare and low-frequency variants and genes that may contribute to EOC susceptibility, albeit with possible small effects. Future studies that integrate epidemiology, sequencing, and functional assays are needed to further unravel the unexplained heritability and biology of this disease.
  7. Figueroa JD, Middlebrooks CD, Banday AR, Ye Y, Garcia-Closas M, Chatterjee N, et al.
    Hum Mol Genet, 2016 Mar 15;25(6):1203-14.
    PMID: 26732427 DOI: 10.1093/hmg/ddv492
    Candidate gene and genome-wide association studies (GWAS) have identified 15 independent genomic regions associated with bladder cancer risk. In search for additional susceptibility variants, we followed up on four promising single-nucleotide polymorphisms (SNPs) that had not achieved genome-wide significance in 6911 cases and 11 814 controls (rs6104690, rs4510656, rs5003154 and rs4907479, P < 1 × 10(-6)), using additional data from existing GWAS datasets and targeted genotyping for studies that did not have GWAS data. In a combined analysis, which included data on up to 15 058 cases and 286 270 controls, two SNPs achieved genome-wide statistical significance: rs6104690 in a gene desert at 20p12.2 (P = 2.19 × 10(-11)) and rs4907479 within the MCF2L gene at 13q34 (P = 3.3 × 10(-10)). Imputation and fine-mapping analyses were performed in these two regions for a subset of 5551 bladder cancer cases and 10 242 controls. Analyses at the 13q34 region suggest a single signal marked by rs4907479. In contrast, we detected two signals in the 20p12.2 region-the first signal is marked by rs6104690, and the second signal is marked by two moderately correlated SNPs (r(2) = 0.53), rs6108803 and the previously reported rs62185668. The second 20p12.2 signal is more strongly associated with the risk of muscle-invasive (T2-T4 stage) compared with non-muscle-invasive (Ta, T1 stage) bladder cancer (case-case P ≤ 0.02 for both rs62185668 and rs6108803). Functional analyses are needed to explore the biological mechanisms underlying these novel genetic associations with risk for bladder cancer.
  8. Zanti M, O'Mahony DG, Parsons MT, Li H, Dennis J, Aittomäkkiki K, et al.
    Hum Mutat, 2023;2023.
    PMID: 38725546 DOI: 10.1155/2023/9961341
    A large number of variants identified through clinical genetic testing in disease susceptibility genes, are of uncertain significance (VUS). Following the recommendations of the American College of Medical Genetics and Genomics (ACMG) and Association for Molecular Pathology (AMP), the frequency in case-control datasets (PS4 criterion), can inform their interpretation. We present a novel case-control likelihood ratio-based method that incorporates gene-specific age-related penetrance. We demonstrate the utility of this method in the analysis of simulated and real datasets. In the analyses of simulated data, the likelihood ratio method was more powerful compared to other methods. Likelihood ratios were calculated for a case-control dataset of BRCA1 and BRCA2 variants from the Breast Cancer Association Consortium (BCAC), and compared with logistic regression results. A larger number of variants reached evidence in favor of pathogenicity, and a substantial number of variants had evidence against pathogenicity - findings that would not have been reached using other case-control analysis methods. Our novel method provides greater power to classify rare variants compared to classical case-control methods. As an initiative from the ENIGMA Analytical Working Group, we provide user-friendly scripts and pre-formatted excel calculators for implementation of the method for rare variants in BRCA1, BRCA2 and other high-risk genes with known penetrance.
  9. Conti DV, Darst BF, Moss LC, Saunders EJ, Sheng X, Chou A, et al.
    Nat Genet, 2021 Jan;53(1):65-75.
    PMID: 33398198 DOI: 10.1038/s41588-020-00748-0
    Prostate cancer is a highly heritable disease with large disparities in incidence rates across ancestry populations. We conducted a multiancestry meta-analysis of prostate cancer genome-wide association studies (107,247 cases and 127,006 controls) and identified 86 new genetic risk variants independently associated with prostate cancer risk, bringing the total to 269 known risk variants. The top genetic risk score (GRS) decile was associated with odds ratios that ranged from 5.06 (95% confidence interval (CI), 4.84-5.29) for men of European ancestry to 3.74 (95% CI, 3.36-4.17) for men of African ancestry. Men of African ancestry were estimated to have a mean GRS that was 2.18-times higher (95% CI, 2.14-2.22), and men of East Asian ancestry 0.73-times lower (95% CI, 0.71-0.76), than men of European ancestry. These findings support the role of germline variation contributing to population differences in prostate cancer risk, with the GRS offering an approach for personalized risk prediction.
  10. Mueller SH, Lai AG, Valkovskaya M, Michailidou K, Bolla MK, Wang Q, et al.
    Genome Med, 2023 Jan 26;15(1):7.
    PMID: 36703164 DOI: 10.1186/s13073-022-01152-5
    BACKGROUND: Low-frequency variants play an important role in breast cancer (BC) susceptibility. Gene-based methods can increase power by combining multiple variants in the same gene and help identify target genes.

    METHODS: We evaluated the potential of gene-based aggregation in the Breast Cancer Association Consortium cohorts including 83,471 cases and 59,199 controls. Low-frequency variants were aggregated for individual genes' coding and regulatory regions. Association results in European ancestry samples were compared to single-marker association results in the same cohort. Gene-based associations were also combined in meta-analysis across individuals with European, Asian, African, and Latin American and Hispanic ancestry.

    RESULTS: In European ancestry samples, 14 genes were significantly associated (q 

  11. Baxter JS, Johnson N, Tomczyk K, Gillespie A, Maguire S, Brough R, et al.
    Am J Hum Genet, 2021 Jul 01;108(7):1190-1203.
    PMID: 34146516 DOI: 10.1016/j.ajhg.2021.05.013
    A combination of genetic and functional approaches has identified three independent breast cancer risk loci at 2q35. A recent fine-scale mapping analysis to refine these associations resulted in 1 (signal 1), 5 (signal 2), and 42 (signal 3) credible causal variants at these loci. We used publicly available in silico DNase I and ChIP-seq data with in vitro reporter gene and CRISPR assays to annotate signals 2 and 3. We identified putative regulatory elements that enhanced cell-type-specific transcription from the IGFBP5 promoter at both signals (30- to 40-fold increased expression by the putative regulatory element at signal 2, 2- to 3-fold by the putative regulatory element at signal 3). We further identified one of the five credible causal variants at signal 2, a 1.4 kb deletion (esv3594306), as the likely causal variant; the deletion allele of this variant was associated with an average additional increase in IGFBP5 expression of 1.3-fold (MCF-7) and 2.2-fold (T-47D). We propose a model in which the deletion allele of esv3594306 juxtaposes two transcription factor binding regions (annotated by estrogen receptor alpha ChIP-seq peaks) to generate a single extended regulatory element. This regulatory element increases cell-type-specific expression of the tumor suppressor gene IGFBP5 and, thereby, reduces risk of estrogen receptor-positive breast cancer (odds ratio = 0.77, 95% CI 0.74-0.81, p = 3.1 × 10-31).
  12. Fachal L, Aschard H, Beesley J, Barnes DR, Allen J, Kar S, et al.
    Nat Genet, 2020 01;52(1):56-73.
    PMID: 31911677 DOI: 10.1038/s41588-019-0537-1
    Genome-wide association studies have identified breast cancer risk variants in over 150 genomic regions, but the mechanisms underlying risk remain largely unknown. These regions were explored by combining association analysis with in silico genomic feature annotations. We defined 205 independent risk-associated signals with the set of credible causal variants in each one. In parallel, we used a Bayesian approach (PAINTOR) that combines genetic association, linkage disequilibrium and enriched genomic features to determine variants with high posterior probabilities of being causal. Potentially causal variants were significantly over-represented in active gene regulatory regions and transcription factor binding sites. We applied our INQUSIT pipeline for prioritizing genes as targets of those potentially causal variants, using gene expression (expression quantitative trait loci), chromatin interaction and functional annotations. Known cancer drivers, transcription factors and genes in the developmental, apoptosis, immune system and DNA integrity checkpoint gene ontology pathways were over-represented among the highest-confidence target genes.
  13. Zhang H, Ahearn TU, Lecarpentier J, Barnes D, Beesley J, Qi G, et al.
    Nat Genet, 2020 06;52(6):572-581.
    PMID: 32424353 DOI: 10.1038/s41588-020-0609-2
    Breast cancer susceptibility variants frequently show heterogeneity in associations by tumor subtype1-3. To identify novel loci, we performed a genome-wide association study including 133,384 breast cancer cases and 113,789 controls, plus 18,908 BRCA1 mutation carriers (9,414 with breast cancer) of European ancestry, using both standard and novel methodologies that account for underlying tumor heterogeneity by estrogen receptor, progesterone receptor and human epidermal growth factor receptor 2 status and tumor grade. We identified 32 novel susceptibility loci (P 
  14. Wang A, Shen J, Rodriguez AA, Saunders EJ, Chen F, Janivara R, et al.
    Nat Genet, 2023 Dec;55(12):2065-2074.
    PMID: 37945903 DOI: 10.1038/s41588-023-01534-4
    The transferability and clinical value of genetic risk scores (GRSs) across populations remain limited due to an imbalance in genetic studies across ancestrally diverse populations. Here we conducted a multi-ancestry genome-wide association study of 156,319 prostate cancer cases and 788,443 controls of European, African, Asian and Hispanic men, reflecting a 57% increase in the number of non-European cases over previous prostate cancer genome-wide association studies. We identified 187 novel risk variants for prostate cancer, increasing the total number of risk variants to 451. An externally replicated multi-ancestry GRS was associated with risk that ranged from 1.8 (per standard deviation) in African ancestry men to 2.2 in European ancestry men. The GRS was associated with a greater risk of aggressive versus non-aggressive disease in men of African ancestry (P = 0.03). Our study presents novel prostate cancer susceptibility loci and a GRS with effective risk stratification across ancestry groups.
  15. Milne RL, Kuchenbaecker KB, Michailidou K, Beesley J, Kar S, Lindström S, et al.
    Nat Genet, 2017 Dec;49(12):1767-1778.
    PMID: 29058716 DOI: 10.1038/ng.3785
    Most common breast cancer susceptibility variants have been identified through genome-wide association studies (GWAS) of predominantly estrogen receptor (ER)-positive disease. We conducted a GWAS using 21,468 ER-negative cases and 100,594 controls combined with 18,908 BRCA1 mutation carriers (9,414 with breast cancer), all of European origin. We identified independent associations at P < 5 × 10-8 with ten variants at nine new loci. At P < 0.05, we replicated associations with 10 of 11 variants previously reported in ER-negative disease or BRCA1 mutation carrier GWAS and observed consistent associations with ER-negative disease for 105 susceptibility variants identified by other studies. These 125 variants explain approximately 16% of the familial risk of this breast cancer subtype. There was high genetic correlation (0.72) between risk of ER-negative breast cancer and breast cancer risk for BRCA1 mutation carriers. These findings may lead to improved risk prediction and inform further fine-mapping and functional work to better understand the biological basis of ER-negative breast cancer.
  16. Phelan CM, Kuchenbaecker KB, Tyrer JP, Kar SP, Lawrenson K, Winham SJ, et al.
    Nat Genet, 2017 May;49(5):680-691.
    PMID: 28346442 DOI: 10.1038/ng.3826
    To identify common alleles associated with different histotypes of epithelial ovarian cancer (EOC), we pooled data from multiple genome-wide genotyping projects totaling 25,509 EOC cases and 40,941 controls. We identified nine new susceptibility loci for different EOC histotypes: six for serous EOC histotypes (3q28, 4q32.3, 8q21.11, 10q24.33, 18q11.2 and 22q12.1), two for mucinous EOC (3q22.3 and 9q31.1) and one for endometrioid EOC (5q12.3). We then performed meta-analysis on the results for high-grade serous ovarian cancer with the results from analysis of 31,448 BRCA1 and BRCA2 mutation carriers, including 3,887 mutation carriers with EOC. This identified three additional susceptibility loci at 2q13, 8q24.1 and 12q24.31. Integrated analyses of genes and regulatory biofeatures at each locus predicted candidate susceptibility genes, including OBFC1, a new candidate susceptibility gene for low-grade and borderline serous EOC.
  17. Michailidou K, Lindström S, Dennis J, Beesley J, Hui S, Kar S, et al.
    Nature, 2017 Nov 02;551(7678):92-94.
    PMID: 29059683 DOI: 10.1038/nature24284
    Breast cancer risk is influenced by rare coding variants in susceptibility genes, such as BRCA1, and many common, mostly non-coding variants. However, much of the genetic contribution to breast cancer risk remains unknown. Here we report the results of a genome-wide association study of breast cancer in 122,977 cases and 105,974 controls of European ancestry and 14,068 cases and 13,104 controls of East Asian ancestry. We identified 65 new loci that are associated with overall breast cancer risk at P 
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links