Displaying all 2 publications

Abstract:
Sort:
  1. Ishak MAI, Jumbri K, Daud S, Abdul Rahman MB, Abdul Wahab R, Yamagishi H, et al.
    J Hazard Mater, 2020 11 15;399:123008.
    PMID: 32502857 DOI: 10.1016/j.jhazmat.2020.123008
    The compatibility and performance of an Isoreticular Metal-Organic Frameworks (IRMOF-1) impregnated with choline-based ionic liquids (ILs) for selective adsorption of H2S/CO2, were studied by molecular dynamics (MD) simulation. Cholinium alanate ([Chl][Ala]) was nominated as the suitable IL for impregnation into IRMOF-1, consistent with the low RMSD values (0.546 nm, 0.670 nm, 0.776 nm) at three IL/IRMOF-1 w/w ratios (WIL/IRMOF-1 = 0.4, 0.8, and 1.2). The [Chl]+ and [Ala]- ion pair was located preferentially around the carboxylate group within the IRMOF-1 framework, with the latter interacting strongly with the host than the [Chl]+. Results of radius of gyration (Rg) and root mean square displacement (RMSD) revealed that a ratio of 0.4 w/w of IL/IRMOF-1 (Rg = 1.405 nm; RMSD = 0.546 nm) gave the best conformation to afford an exceptionally stable IL/IRMOF-1 composite. It was discovered that the IL/IRMOF-1 composite was more effective in capturing H2S and CO2 compared to pristine IRMOF-1. The gases adsorbed in higher quantities in the IL/IRMOF-1 composite phase compared to the bulk phase, with a preferential adsorption for H2S, as shown by the uppermost values of adsorption ( [Formula: see text] = 17.954 mol L-1 bar-1) and an adsorption selectivity ( [Formula: see text] = 43.159) at 35 IL loading.
  2. Ishak MAI, Aun TT, Sidek N, Mohamad S, Jumbri K, Abdul Manan NS
    J Comput Chem, 2024 Jun 15;45(16):1329-1351.
    PMID: 38372509 DOI: 10.1002/jcc.27321
    In this study, the enantioselectivity of β-cyclodextrin and its derivatives towards propranolol enantiomers are investigated by molecular dynamic (MD) simulations. β-cyclodextrin (β-CD) have previously been shown to be able to recognize propranolol (PRP) enantiomers. To improve upon the enantioselectivity of β-cyclodextrin, we propose the use of an ionic-liquid-modified-β-cyclodextrin (β-CD-IL). β-CD-IL was found to be able to complex R and S propranolol enantiomers with differing binding energies. The molecular docking study reveals that the ionic liquid chain attached to the β-CD molecule has significant interaction with propranolol. The formation of the most stable complex occurred between (S)-β-CD-IL and (S)-propranolol with an energy of -5.80 kcal/mol. This is attributed to the formation of a hydrogen bond between the oxygen of the propranolol and the hydrogen on the primary rim of the (S)-β-CD-IL cavity. This interaction is not detected in other complexes. The root mean-squared fluctuation (RMSF) value indicates that the NH group is the most flexible molecular fragment, followed by the aromatic group. Also of note, the formation of a complex between pristine β-CD and (S)-propranolol is the least favorable.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links