Displaying all 2 publications

Abstract:
Sort:
  1. Khandakar A, Chowdhury MEH, Ibne Reaz MB, Md Ali SH, Hasan MA, Kiranyaz S, et al.
    Comput Biol Med, 2021 10;137:104838.
    PMID: 34534794 DOI: 10.1016/j.compbiomed.2021.104838
    Diabetes foot ulceration (DFU) and amputation are a cause of significant morbidity. The prevention of DFU may be achieved by the identification of patients at risk of DFU and the institution of preventative measures through education and offloading. Several studies have reported that thermogram images may help to detect an increase in plantar temperature prior to DFU. However, the distribution of plantar temperature may be heterogeneous, making it difficult to quantify and utilize to predict outcomes. We have compared a machine learning-based scoring technique with feature selection and optimization techniques and learning classifiers to several state-of-the-art Convolutional Neural Networks (CNNs) on foot thermogram images and propose a robust solution to identify the diabetic foot. A comparatively shallow CNN model, MobilenetV2 achieved an F1 score of ∼95% for a two-feet thermogram image-based classification and the AdaBoost Classifier used 10 features and achieved an F1 score of 97%. A comparison of the inference time for the best-performing networks confirmed that the proposed algorithm can be deployed as a smartphone application to allow the user to monitor the progression of the DFU in a home setting.
  2. Haque F, Ibne Reaz MB, Chowdhury MEH, Md Ali SH, Ashrif A Bakar A, Rahman T, et al.
    Comput Biol Med, 2021 12;139:104954.
    PMID: 34715551 DOI: 10.1016/j.compbiomed.2021.104954
    BACKGROUND: Diabetic Sensorimotor polyneuropathy (DSPN) is one of the major indelible complications in diabetic patients. Michigan neuropathy screening instrumentation (MNSI) is one of the most common screening techniques used for DSPN, however, it does not provide any direct severity grading system.

    METHOD: For designing and modeling the DSPN severity grading systems for MNSI, 19 years of data from Epidemiology of Diabetes Interventions and Complications (EDIC) clinical trials were used. Different Machine learning-based feature ranking techniques were investigated to identify the important MNSI features associated with DSPN diagnosis. A multivariable logistic regression-based nomogram was generated and validated for DSPN severity grading using the best performing top-ranked MNSI features.

    RESULTS: Top-10 ranked features from MNSI features: Appearance of Feet (R), Ankle Reflexes (R), Vibration perception (L), Vibration perception (R), Appearance of Feet (L), 10-gm filament (L), Ankle Reflexes (L), 10-gm filament (R), Bed Cover Touch, and Ulceration (R) were identified as important features for identifying DSPN by Multi-Tree Extreme Gradient Boost model. The nomogram-based prediction model exhibited an accuracy of 97.95% and 98.84% for the EDIC test set and an independent test set, respectively. A DSPN severity score technique was generated for MNSI from the DSPN severity prediction model. DSPN patients were stratified into four severity levels: absent, mild, moderate, and severe using the cut-off values of 17.6, 19.1, 20.5 for the DSPN probability less than 50%, 75%-90%, and above 90%, respectively.

    CONCLUSIONS: The findings of this work provide a machine learning-based MNSI severity grading system which has the potential to be used as a secondary decision support system by health professionals in clinical applications and large clinical trials to identify high-risk DSPN patients.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links