Displaying all 4 publications

Abstract:
Sort:
  1. Iberahim N, Sethupathi S, Bashir MJK
    Environ Sci Pollut Res Int, 2018 Sep;25(26):25702-25714.
    PMID: 28550632 DOI: 10.1007/s11356-017-9180-5
    In this study, palm oil mill sludge was used as a precursor to prepare biochar using conventional pyrolysis. Palm oil mill sludge biochar (POSB) was prepared at different preparation variables, i.e., heating temperature (300-800 °C), heating rate (10-20 °C/min) and holding time (60-120 min). The prepared biochars were tested for sulfur dioxide (SO2) adsorption in a fixed bed reactor using 300 ppm of SO2 gas at 300 ml/min (with N2 gas as balance). Response surface central composite experimental design was used to optimize the production of biochar versus SO2 removal. A quadratic model was developed in order to correlate the effect of variable parameters on the optimum adsorption capacity of SO2 gas. The experimental values and the predicted results of the model were found to show satisfactory agreement. The optimum conditions for biochar preparation to yield the best SO2 removal was found to be at 405 °C of heating temperature, 20 °C/min of heating rate and 88 min of holding time. At these conditions, the average yield of biochar and adsorption capacity for SO2 gas was reported as 54.25 g and 9.75 mg/g, respectively. The structure of biochar and their roles in SO2 adsorption were investigated by surface area, morphology images, infrared spectra, and proximate analysis, respectively. The characterization findings suggested that POSB adsorbs SO2 mainly by the functional groups.
  2. Ahmad W, Sethupathi S, Kanadasan G, Iberahim N
    Environ Sci Pollut Res Int, 2020 Jun;27(17):22065-22080.
    PMID: 32285395 DOI: 10.1007/s11356-020-08671-x
    Eggshell is a food waste produced worldwide in substantial amount with very limited recycling activity. In this study, the potential of ethanol-treated calcined eggshell was tested as sorbent for SO2 and H2S. Three variables were selected in the preparation of sorbents via response surface methodology (RSM), i.e., concentration of ethanol in water (50%, 70%, 90%), reaction temperature (20 °C, 40 °C, 60 °C), and contact time (30, 60, 90 min). Central composite design (CCD) was used to develop a quadratic model to correlate the operating variables with the adsorption capacity. Analysis of variance (ANOVA) was performed to identify the significant factors of the experimental design. It was found that the reaction temperature during the sorbent preparation was the most significant factor. The optimum preparation conditions using RSM were found at 20 °C of reaction temperature with 76.37% of ethanol concentration for 67 min of reaction time. The maximum adsorption capacity for the optimized sorbent was found to be 27.75 mg/g and 9.55 mg/g for SO2 and H2S, respectively. The prepared sorbent was more selective towards SO2 compared with H2S. Moreover, the presence of 40% of relative humidity in the inlet gas further enhanced the adsorption capacity of both gases. The ethanol-treated calcined eggshell was further substantiated by FESEM, BET, FTIR, XRD, and XRF. Results showed potential usage of eggshell as a sorbent for SO2 and H2S gases.
  3. Iberahim N, Sethupathi S, Bashir MJK, Kanthasamy R, Ahmad T
    Sci Total Environ, 2022 Jan 20;805:150421.
    PMID: 34818803 DOI: 10.1016/j.scitotenv.2021.150421
    The emission of sulphur dioxide (SO2) gas from power plants and factories to the atmosphere has been an environmental challenge globally. Thus, there is a great interest to control the SO2 gas emission economically and effectively. This study aims to use and convert abundantly available oil palm fiber (OPF) biomass into an adsorbent to adsorb SO2 gas. The preparation of OPF biochar and activated biochar was optimised using the Response Surface Methodology (RSM) based on selected parameters (i.e., pyrolysis temperature, heating rate, holding time, activation temperature, activation time and CO2 flowrate). The best adsorbent was found to be the OPF activated biochar (OPFAB) compared to OPF biochar. OPFAB prepared at 753 °C for 73 min of activation time with 497 ml/min of CO2 flow yields the best adsorption capacity (33.09 mg/g) of SO2. Meanwhile, OPF pyrolysed at 450 °C of heating temperature, 12 °C/min of heating rate and 98 min of holding time yield adsorption capacity at 18.62 mg/g. Various characterisations were performed to investigate the properties and mechanism of the SO2 adsorption process. Thermal regeneration shows the possibilities for the spent adsorbent to be recycled. The findings imply OPFAB as a promising adsorbent for SO2 adsorption.
  4. Iberahim N, Sethupathi S, Goh CL, Bashir MJK, Ahmad W
    J Environ Manage, 2019 Oct 15;248:109302.
    PMID: 31377539 DOI: 10.1016/j.jenvman.2019.109302
    Palm oil sludge (POS) is an organic waste generated from the palm oil industry. POS causes environmental pollution if it is improperly disposed. In this study, the potential of activated POS biochar, as an adsorbent for the removal of SO2 gas was tested. POS biochar was physically activated using CO2 gas. The effects of activation preparation variables i.e. activation temperature (300-700 °C), activation time (30-150 min) and CO2 flow rate (100-500 ml/min) were investigated using design expert version 8.0.7.1 software. Central Composite Design (CCD) was used to develop a quadratic model to correlate the operating variables with the activated biochar adsorption capacity. Analysis of variance (ANOVA) was performed to identify the significant factors on the experimental design response. The optimum preparation conditions of activated POS biochar were found to be at activation temperature of 442 °C, activation time of 63 min and CO2 flow rate of 397 ml/min. The maximum adsorption capacity at the optimum conditions was recorded as 16.65 mg/g. The adsorption capacity increased significantly after the activation process. Characteristics of the activated POS biochar proposed that SO2 was physically adsorbed. Furthermore, it was found that the adsorption capacity can be further enhanced by increasing the reaction temperature to 100 °C or with 15% of relative humidity in the inlet gas. The prepared adsorbents can be regenerated by thermal treatment.
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links