Displaying all 3 publications

Abstract:
Sort:
  1. Nazar M, Ahmad A, Hussain SMS, Moniruzzaman M
    Mar Pollut Bull, 2024 May;202:116311.
    PMID: 38574502 DOI: 10.1016/j.marpolbul.2024.116311
    The synthesis of new surfactants helps to mitigate the environmental and financial effects of oil spills by providing efficient cleanup options. Herein, this study provides the development of a binary mixture of Span 80 and Choline myristate [Cho][Mys], a surface-active ionic liquid (SAIL) as green dispersant for oil spill remediation. The synergistic interaction at a 60:40 (w/w) ratio significantly lowered the critical micelle concentration (cmc) to 0.029 mM. Dispersion efficiency tests with Arab crude oil showed optimal performance at a 60:40 ratio of Span 80 and [Cho][Mys] (1:25 dispersant to oil ratio, v/v), achieving 81.16 % dispersion effectiveness in the baffled flask test. The binary mixture demonstrated superior emulsion stability (6 h) and the lowest interfacial tension (1.12 mN/m). Acute toxicity experiments revealed the dispersant's practical non-toxicity with an LC50 value of 600 mg/L. Overall, this environmentally benign surfactant combination shows promise as a safe and effective oil spill dispersant.
  2. Nazar M, Ahmad A, Hussain SMS, Moniruzzaman M
    ACS Omega, 2024 Jul 16;9(28):30636-30644.
    PMID: 39035979 DOI: 10.1021/acsomega.4c02742
    The use of chemical dispersants to remove oil spills in aquatic environments raises serious concerns, including heightened toxicity and limited biodegradability, which diminish their effectiveness. This study aimed to develop an environmentally friendly formulation by combining two nonionic surfactants (Tween 80, Span 80) with two surface-active ionic liquids (SAILs): 1-butyl-3-methylimidazolium lauroyl sarcosinate [Bmim][Lausar] and choline myristate [Cho][Mys], to remediate crude oil spill. The performance of the formulation was evaluated by its emulsion stability, surface tension, interfacial tension (IFT), and effectiveness. The toxicity and biodegradability of the formulation were also assessed to ensure their safe application in aquatic environments. The formulation (F9) exhibited the most stable emulsion, maintaining stability even after 5 h with a critical micelle concentration (CMC) of 3.52 mM. The efficiency of the formulation in dispersing various crude oils (Arab, Ratawi, and Doba) ranged from 70.12 to 93.72%. Acute toxicity tests conducted on zebrafish demonstrated that the formulation, with an LC50 value of 450 mg L-1, exhibited practically nontoxicity after 96 h. The formulation showed rapid biodegradability, exceeding 60% within a 28-day testing period. This research presents a promising approach for synthesizing the green formulation which can contribute to mitigating the environmental impacts of oil spills and enhancing the efficiency of cleanup operations.
  3. Hossain MK, Hendi A, Asim N, Alghoul MA, Rafiqul Islam M, Hussain SMS
    Chem Asian J, 2024 Aug 19;19(16):e202300529.
    PMID: 37695946 DOI: 10.1002/asia.202300529
    Chemiresistive sensing lies in its ability to provide fast, accurate, and reliable detection of various gases in a cost-effective and non-invasive manner. In this context, graphene-functionalized metal oxides play crucial role in hydrogen gas sensing. However, a cost-effective, defect-free, and large production schemes of graphene-based sensors are required for industrial applications. This review focuses on graphene-functionalized metal oxide nanostructures designed for gaseous molecules detection, mainly hydrogen gas sensing applications. For the convenience of the reader and to understand the role of graphene-metal oxide hybrids (GMOH) in gas sensing activities, a brief overview of the properties and synthesis routes of graphene and GMOH have been reported in this paper. Metal oxides play an essential role in the GMOH construct for hydrogen gas sensing. Therefore, various metal oxides-decorated GMOH constructs are detailed in this review as gas sensing platforms, particularly for hydrogen detection. Finally, specific directions for future research works and challenges ahead in designing highly selective and sensitive hydrogen gas sensors have been highlighted. As illustrated in this review, understanding of the metal oxides-decorated GMOH constructs is expected to guide ones in developing emerging hybrid nanomaterials that are suitable for hydrogen gas sensing applications.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links