Displaying all 10 publications

Abstract:
Sort:
  1. Arul P, Nandhini C, Huang ST, Gowthaman NSK, Huang CH
    Food Chem, 2023 Jul 15;414:135747.
    PMID: 36841102 DOI: 10.1016/j.foodchem.2023.135747
    A simple and rapid screening of biomarkers in clinical and food matrices is urgently needed to diagnose cardiovascular diseases. The cholesterol (Chol) and hydrogen peroxide (H2O2) are critical bio-indicators, which require more inventive detection techniques to be applied to real food, and bio-samples. In this study, a robust dual sensor was developed for Chol and H2O2 using hybrid catalyst. Bovine serum albumin (BSA)-capped nanocatalyst was potentially catalyzed 3,3',5,5'-tetramethylbenzidine (TMB), and H2O2. The enzymatic nanoelectrocatalyst delivered a wide range of signaling concentrations from 250 nM to 3.0 mM and 100 nM to 10 mM, limit of detection (LOD) of 53.2 nM and 18.4 nM for Chol and H2O2. The cholesterol oxidase-BSA-AuNPs-metal-free organic framework (ChOx-BSA-AuNPs-MFOF) based electrode surface effectively operated in live-cells and real-food samples. The enzymatic sensor exhibits adequate recovery of real-food samples (96.96-99.44%). Finally, the proposed system is a suitable choice for the potential applications of Chol and H2O2 in clinical and food chemistry.
  2. Huang CH, Liew LM, Mah KW, Kuo IC, Lee BW, Chua KY
    Clin Exp Allergy, 2006 Mar;36(3):369-76.
    PMID: 16499649
    Sensitization to mite and cockroach allergens is common, and diagnosis and therapy of allergy can be further complicated by the presence of allergen isoforms and panallergens. Purified recombinant and native allergens are useful for studies to resolve such problems.
  3. Chen WL, Lin SC, Huang CH, Peng SY, Ling YS
    Sci Total Environ, 2021 Jan 01;750:141519.
    PMID: 32861074 DOI: 10.1016/j.scitotenv.2020.141519
    The use of livestock waste for the production of biogas and the application of biogas slurry to agricultural soil can resolve livestock waste problems and reduce synthetic fertiliser use. However, the migration of veterinary drugs to land and crops resulting from biogas slurry irrigation is a potential food safety concern. This study employed an ultra-performance liquid chromatography coupled with quadrupole-time of flight high-resolution mass spectrometry system for wide-scope suspect screening of pharmaceutically active substances on crop cultivated under biogas slurry irrigation. Briefly, a total of 22 pak choi samples were obtained from a greenhouse farmed in tropical south Taiwan between March 2019 and March 2020. Molecular spectra and fragmented ions (between m/z 70 and 1100) were acquired. Ion features were searched and matched with a library consisting of 1068 compounds. The matrixes in the crop production environment including soil, livestock wastewater, biogas slurry, and groundwater were included in this study to elucidate potential sources of the pharmaceutically active substances. Results demonstrated 23 suspects were matched with high mass accuracy (mass error within ±5.0 ppm) in pak choi. The detection of both bufexamac and nandrolone were confirmed using standards, where a new system of identification points was applied. Nandrolone was detected throughout the pak choi samples as well as livestock wastewater. Tetracycline, macrolide, and sulfonamide antibiotics were presented in biogas slurry and soil but not pak choi. This is the first study to reveal the presence of multiclass pharmaceutically active substances in a crop supplied as food. Such findings suggest that anabolics and antibiotics should be closely monitored in the corps irrigated by biogas slurry in future.
  4. Chen TY, Mani V, Huang ST, Chang PC, Huang CH, Huang NM
    Anal Chim Acta, 2017 Oct 16;990:78-83.
    PMID: 29029745 DOI: 10.1016/j.aca.2017.08.051
    An electrochemical latent redox probe, SAF 5 was designed, synthesized and characterized. A rapid and sensitive solution-based assay was demonstrated for salicylate hydroxylase (SHL). In presence of NADH at aerobic conditions, SHL catalyzed the decarboxylative hydroxylation of SAF and released a redox reporter amino ferrocene (AF 6). The release of AF 6 was monitored at interference free potential region (-50 mV vs. Ag|AgCl) using differential pulse voltammetry as signal read-out. The current signal generated by this process is highly specific, and insensitive to other biological interfering compounds. Next, the SAF incorporated SHL assay was extended to fabricate immobilization-free biosensors for rapid sensing of salicylic acid (SA) and β-hydroxybutyrate (β-HB) in whole blood. The described method rapidly detects SA in a linear range of 35-560 μM with detection limit of 5.0 μM. For β-HB determination, the linear range was 10-600 μM and detection limit was 2.0 μM. Besides, the assay protocols are simple, fast, reliable, selective, sensitive and advantageous over existing methods. The whole blood assay did not required cumbersome steps such as, enzyme immobilization, pre-treatments and holds great practical potential in clinical diagnosis.
  5. Soh JY, Chiang WC, Huang CH, Woo CK, Ibrahim I, Heng K, et al.
    World Allergy Organ J, 2017;10(1):3.
    PMID: 28232856 DOI: 10.1186/s40413-016-0136-x
    BACKGROUND: Galacto-oligosaccharides (GOS) are prebiotics added to commercial milk formula of infants and mothers. In recent years, cases of allergy related to GOS in atopic children have been reported in the South East Asian region.

    CASE PRESENTATIONS: We describe a series of pregnant (n = 4) and lactating mothers (n = 2) who developed anaphylactic reactions after consumption of maternal milk formula containing GOS. All six subjects had pre-existing atopy and a positive skin prick test to GOS and 5/5 of the subjects who were tested had positive basophil activation tests to GOS. All of the mothers and their babies had normal neonatal outcomes after the reactions.

    CONCLUSIONS: The supplementation of GOS into milk and beverages in the Asian region should take into account the rare chance of allergenicity of GOS in the atopic population.

  6. Arul P, Huang ST, Nandhini C, Huang CH, Gowthaman NSK, Huang CH
    Biosens Bioelectron, 2024 Oct 01;261:116485.
    PMID: 38852323 DOI: 10.1016/j.bios.2024.116485
    Developing quantitative biosensors of superoxide (O2•-) and nitric oxide (NO) anion is crucial for pathological research. As of today, the main challenge for electrochemical detection is to develop high-selectivity nano-mimetic materials to replace natural enzymes. In this study, the dendritic-like morphological structure of silver organic framework (Ag-MOF) was successfully synthesized via a solvothermal strategy. Owing to the introduction of polymeric composites results in improved electrical conductivity and catalytic activity, which promotes mass transfer and leads to faster electron efficiency. For monitoring the electrochemical signals of O2•- and NO, the Ag-MOF electrode substrate was produced by drop-coating, and composites were designed by cyclic voltammetric potential cycles. The designed electrode substrates demonstrate high sensitivity, wide linear concentrations of 1 nM-1000 μM and 1 nM-850 μM, and low detection limits of 0.27 nM and 0.34 nM (S/N = 3) against O2•- and NO. Aside from that, the sensor successfully monitored the cellular release of O2•-, and NO from HepG2 and RAW 264.7 living cells and has the potential to monitor exogenous NO release from donors of Diethylamine (DEA)-NONOate and sodium nitroprusside (SNP). Additionally, the developed system was applied to the analysis of O2•- and NO in real biological fluid samples, and the results were good satisfactory (94.10-99.57 ± 1.23%). The designed system provides a novel approach to obtaining a good electrochemical biosensor platform that is highly selective, stable, and flexible. Finally, the proposed method provides a quantitative way to follow the dynamic changes in O2•- and NO in biological systems.
  7. Ruckwongpatr K, Ahorsu DK, Pimsen A, Paratthakonkun C, Tung SEH, Pramukti I, et al.
    Eval Health Prof, 2024 Aug 16.
    PMID: 39148374 DOI: 10.1177/01632787241271117
    Examining ways of reducing physical inactivity has been at the forefront of public health research. Moreover, valid and reliable scales are needed to objectively assess physical activity (PA) avoidance. Previous research has shown that experiencing weight stigma and physical appearance-related concerns are associated with physical inactivity. However, there is currently no Thai instrument that assesses physical inactivity in relation to weight stigma. Therefore, the present study examined the psychometric properties of the Thai version of the Tendency to Avoid Physical Activity and Sport Scale (TAPAS). Thai university students (N = 612) recruited via convenience sampling completed an online survey using SurveyMonkey between September 2022 and January 2023. Confirmatory factor analysis (CFA), multigroup CFA, and Pearson correlations (between TAPAS scores, age, body mass index, and time spent exercising) were used to analyze the data. The CFA showed robust psychometric properties for the Thai version of TAPAS regarding its unidimensional structure. The TAPAS was measurement invariant across sex, weight status, and daily hours of exercise. However, no significant Pearson correlations were found. In general, the results showed that the TAPAS is a good scale for assessing PA avoidance among Thai young adults across different sexes, weight status, and daily hours of exercise.
  8. Lee CY, Huang CH, Rastegari E, Rengganaten V, Liu PC, Tsai PH, et al.
    Int J Mol Sci, 2021 Sep 13;22(18).
    PMID: 34576032 DOI: 10.3390/ijms22189869
    The coronavirus disease 2019 (COVID-19) pandemic with high infectivity and mortality has caused severe social and economic impacts worldwide. Growing reports of COVID-19 patients with multi-organ damage indicated that severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) may also disturb the cardiovascular system. Herein, we used human induced pluripotent stem cell (iPSC)-derived cardiomyocytes (iCMs) as the in vitro platform to examine the consequence of SARS-CoV2 infection on iCMs. Differentiated iCMs expressed the primary SARS-CoV2 receptor angiotensin-converting enzyme-II (ACE2) and the transmembrane protease serine type 2 (TMPRSS2) receptor suggesting the susceptibility of iCMs to SARS-CoV2. Following the infection of iCMs with SARS-CoV2, the viral nucleocapsid (N) protein was detected in the host cells, demonstrating the successful infection. Bioinformatics analysis revealed that the SARS-CoV2 infection upregulates several inflammation-related genes, including the proinflammatory cytokine tumor necrosis factor-α (TNF-α). The pretreatment of iCMs with TNF-α for 24 h, significantly increased the expression of ACE2 and TMPRSS2, SASR-CoV2 entry receptors. The TNF-α pretreatment enhanced the entry of GFP-expressing SARS-CoV2 pseudovirus into iCMs, and the neutralization of TNF-α ameliorated the TNF-α-enhanced viral entry. Collectively, SARS-CoV2 elevated TNF-α expression, which in turn enhanced the SARS-CoV2 viral entry. Our findings suggest that, TNF-α may participate in the cytokine storm and aggravate the myocardial damage in COVID-19 patients.
  9. Wong WM, Tham YC, Simunovic MP, Chen FK, Luu CD, Chen H, et al.
    Asia Pac J Ophthalmol (Phila), 2024;13(1):100030.
    PMID: 38233300 DOI: 10.1016/j.apjo.2023.100030
    PURPOSE: There are major gaps in our knowledge of hereditary ocular conditions in the Asia-Pacific population, which comprises approximately 60% of the world's population. Therefore, a concerted regional effort is urgently needed to close this critical knowledge gap and apply precision medicine technology to improve the quality of lives of these patients in the Asia-Pacific region.

    DESIGN: Multi-national, multi-center collaborative network.

    METHODS: The Research Standing Committee of the Asia-Pacific Academy of Ophthalmology and the Asia-Pacific Society of Eye Genetics fostered this research collaboration, which brings together renowned institutions and experts for inherited eye diseases in the Asia-Pacific region. The immediate priority of the network will be inherited retinal diseases (IRDs), where there is a lack of detailed characterization of these conditions and in the number of established registries.

    RESULTS: The network comprises 55 members from 35 centers, spanning 12 countries and regions, including Australia, China, India, Indonesia, Japan, South Korea, Malaysia, Nepal, Philippines, Singapore, Taiwan, and Thailand. The steering committee comprises ophthalmologists with experience in consortia for eye diseases in the Asia-Pacific region, leading ophthalmologists and vision scientists in the field of IRDs internationally, and ophthalmic geneticists.

    CONCLUSIONS: The Asia Pacific Inherited Eye Disease (APIED) network aims to (1) improve genotyping capabilities and expertise to increase early and accurate genetic diagnosis of IRDs, (2) harmonise deep phenotyping practices and utilization of ontological terms, and (3) establish high-quality, multi-user, federated disease registries that will facilitate patient care, genetic counseling, and research of IRDs regionally and internationally.

  10. Kumar A, Arora A, Choudhury A, Arora V, Rela M, Jothimani DK, et al.
    Am J Gastroenterol, 2024 Jul 17.
    PMID: 39016385 DOI: 10.14309/ajg.0000000000002951
    BACKGROUND: The prevalence of Metabolic dysfunction associated fatty liver disease (MAFLD) and its complication, MAFLD-related acute on chronic liver failure (MAFLD-ACLF), is rising. Yet, factors determining patient outcomes in MAFLD-ACLF remain understudied.

    METHODS: Patients with MAFLD-ACLF were recruited from the AARC registry. The diagnosis of MAFLD-ACLF was made when the treating unit had identified the etiology of chronic liver disease (CLD) as MAFLD (or previous nomenclature such as NAFLD, NASH, or NASH-cirrhosis). Patients with coexisting other etiologies of CLD (such as alcohol, HBV, HCV, etc.) were excluded. Data was randomly split into derivation (n=258) and validation (n=111) cohorts at a 70:30 ratio. The primary outcome was 90-day mortality. Only the baseline clinical, laboratory features and severity scores were considered.

    RESULTS: The derivation group had 258 patients; 60% were male, with a mean age of 53. Diabetes was noted in 27%, and hypertension in 29%. The dominant precipitants included viral hepatitis (HAV and HEV, 32%), drug-induced injury (DILI, 29%) and sepsis (23%). MELD-Na and AARC scores upon admission averaged 32±6 and 10.4±1.9. At 90 days, 51% survived. Non-viral precipitant, diabetes, bilirubin, INR, and encephalopathy were independent factors influencing mortality. Adding diabetes and precipitant to MELD-Na and AARC scores, the novel MAFLD-MELD-Na score (+12 for diabetes, +12 for non-viral precipitant) and MAFLD-AARC score (+5 for each) were formed. These outperformed the standard scores in both cohorts.

    CONCLUSION: Almost half of MAFLD-ACLF patients die within 90 days. Diabetes and non-viral precipitants such as DILI and sepsis lead to adverse outcomes. The new MAFLD-MELD-Na and MAFLD-AARC scores provide reliable 90-day mortality predictions for MAFLD-ACLF patients.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links