Displaying all 3 publications

Abstract:
Sort:
  1. Lee CW, Lim JH, Heng PL
    Environ Monit Assess, 2013 Dec;185(12):9697-704.
    PMID: 23748919 DOI: 10.1007/s10661-013-3283-3
    We sampled extensively (29 stations) at the Klang estuarine system over a 3-day scientific expedition. We measured physical and chemical variables (temperature, salinity, dissolved oxygen, total suspended solids, dissolved inorganic nutrients) and related them to the spatial distribution of phototrophic picoplankton (Ppico). Multivariate analysis of variance of the physicochemical variables showed the heterogeneity of the Klang estuarine system where the stations at each transect were significantly different (Rao's F₁₈, ₃₆ = 8.401, p < 0.001). Correlation analyses also showed that variables related to Ppico abundance and growth were mutually exclusive. Distribution of Ppico was best explained by the physical mixing between freshwater and seawater whereas Ppico growth was correlated with temperature.
  2. Heng PL, Lim JH, Lee CW
    Environ Monit Assess, 2017 Mar;189(3):117.
    PMID: 28220442 DOI: 10.1007/s10661-017-5838-1
    Temporal variation of Synechococcus, its production (μ) and grazing loss (g) rates were studied for 2 years at nearshore stations, i.e. Port Dickson and Port Klang along the Straits of Malacca. Synechococcus abundance at Port Dickson (0.3-2.3 × 10(5) cell ml(-1)) was always higher than at Port Klang (0.3-7.1 × 10(4) cell ml(-1)) (p  0.25), but nutrient and light availability were important factors for their distribution. The relationship was modelled as log Synechococcus = 0.37Secchi - 0.01DIN + 4.52 where light availability (as Secchi disc depth) was a more important determinant. From a two-factorial experiment, nutrients were not significant for Synechococcus growth as in situ nutrient concentrations exceeded the threshold for saturated growth. However, light availability was important and elevated Synechococcus growth rates especially at Port Dickson (F = 5.94, p  0.30). In nearshore tropical waters, an estimated 69 % of Synechococcus production could be grazed.
  3. Lee CW, Lim JH, Heng PL, Marican NF, Narayanan K, Sim EUH, et al.
    Environ Monit Assess, 2020 Sep 25;192(10):660.
    PMID: 32975666 DOI: 10.1007/s10661-020-08625-3
    We sampled the Klang estuary during the inter-monsoon and northeast monsoon period (July-Nov 2011, Oct-Nov 2012), which coincided with higher rainfall and elevated Klang River flow. The increased freshwater inflow into the estuary resulted in water column stratification that was observed during both sampling periods. Dissolved oxygen (DO) dropped below 63 μM, and hypoxia was observed. Elevated river flow also transported dissolved inorganic nutrients, chlorophyll a and bacteria to the estuary. However, bacterial production did not correlate with DO concentration in this study. As hypoxia was probably not due to in situ heterotrophic processes, deoxygenated waters were probably from upstream. We surmised this as DO correlated with salinity (R2 = 0.664, df = 86, p  6.7 h), hypoxia could occur at the Klang estuary. Here, we presented a model that related riverine flow rate to the post-heavy rainfall hypoxia that explicated the episodic hypoxia at Klang estuary. As Klang estuary supports aquaculture and cockle culture, our results could help protect the aquaculture and cockle culture industry here.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links