The detection of bright objects such as optic disc (OD) and exudates in color fundus images is an important step in the diagnosis of eye diseases such as diabetic retinopathy and glaucoma. In this paper, a novel approach to automatically segment the OD and exudates is proposed. The proposed algorithm makes use of the green component of the image and preprocessing steps such as average filtering, contrast adjustment, and thresholding. The other processing techniques used are morphological opening, extended maxima operator, minima imposition, and watershed transformation. The proposed algorithm is evaluated using the test images of STARE and DRIVE databases with fixed and variable thresholds. The images drawn by human expert are taken as the reference images. The proposed method yields sensitivity values as high as 96.7%, which are better than the results reported in the literature.
Blood vessel detection in retinal images is a fundamental step for feature extraction and interpretation of image content. This paper proposes a novel computational paradigm for detection of blood vessels in fundus images based on RGB components and quadtree decomposition. The proposed algorithm employs median filtering, quadtree decomposition, post filtration of detected edges, and morphological reconstruction on retinal images. The application of preprocessing algorithm helps in enhancing the image to make it better fit for the subsequent analysis and it is a vital phase before decomposing the image. Quadtree decomposition provides information on the different types of blocks and intensities of the pixels within the blocks. The post filtration and morphological reconstruction assist in filling the edges of the blood vessels and removing the false alarms and unwanted objects from the background, while restoring the original shape of the connected vessels. The proposed method which makes use of the three color components (RGB) is tested on various images of publicly available database. The results are compared with those obtained by other known methods as well as with the results obtained by using the proposed method with the green color component only. It is shown that the proposed method can yield true positive fraction values as high as 0.77, which are comparable to or somewhat higher than the results obtained by other known methods. It is also shown that the effect of noise can be reduced if the proposed method is implemented using only the green color component.