Displaying all 2 publications

Abstract:
Sort:
  1. Shamsuddin SR, Hashim AA, Nazer B, Hashairi F, Shaik Farid AW, Abu Yazid MN
    Med J Malaysia, 2012 Jun;67(3):349-50.
    PMID: 23082436 MyJurnal
    Ring removal is indicated in a number of clinical circumstances to manage or prevent tourniquet effect of the digit. A ring made from hardened metal may defy commonly known methods of removal. We reported a case of unusual difficulty in removing a ring of hardened metal composition using a dental drill. We believed the unusual circumstances of this case is likely to be repeated in some other clinical practice and this instrument is an appropriate option to consider in such cases.
  2. Hamid NJA, Kadir AA, Hashar NNH, Pietrusiewicz P, Nabiałek M, Wnuk I, et al.
    Materials (Basel), 2021 May 24;14(11).
    PMID: 34074057 DOI: 10.3390/ma14112800
    Wastewater treatment activities in the chemical industry have generated abundant gypsum waste, classified as scheduled waste (SW205) under the Environmental Quality Regulations 2005. The waste needs to be disposed into a secure landfill due to the high heavy metals content which is becoming a threat to the environment. Hence, an alternative disposal method was evaluated by recycling the waste into fired clay brick. The brick samples were incorporated with different percentages of gypsum waste (0% as control, 10, 20, 30, 40 and 50%) and were fired at 1050 °C using 1 °C per minute heating rate. Shrinkage, dry density, initial rate of suction (IRS) and compressive strength tests were conducted to determine the physical and mechanical properties of the brick, while the synthetic precipitation leaching procedure (SPLP) was performed to scrutinize the leachability of heavy metals from the crushed brick samples. The results showed that the properties would decrease through the incorporation of gypsum waste and indicated the best result at 10% of waste utilization with 47.5% of shrinkage, 1.37% of dry density, 22.87% of IRS and 28.3% of compressive strength. In addition, the leachability test highlighted that the concentrations of Fe and Al was significantly reduced up to 100% from 4884 to 3.13 ppm (Fe) and from 16,134 to 0.81 ppm (Al), respectively. The heavy metals content in the bricks were oxidized during the firing process, which signified the successful remediation of heavy metals in the samples. Based on the permissible incorporation of gypsum waste into fired clay brick, this study promised a more green disposing method for gypsum waste, and insight as a potential towards achieving a sustainable end product.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links