Displaying all 2 publications

Abstract:
Sort:
  1. Hasanah U, Rejeki PS, Wungu CDK, Pranoto A, Izzatunnisa N, Rahmanto I, et al.
    J Basic Clin Physiol Pharmacol, 2024 Jan 01;35(1-2):71-78.
    PMID: 38482824 DOI: 10.1515/jbcpp-2023-0150
    OBJECTIVES: Lifestyle, overnutrition, socioeconomic status, environmental conditions, and genetics are factors that cause obesity. Lifestyle modification with a nonpharmacological approach based on physical exercise is the starting point in overcoming obesity. However, physical exercise with the appropriate and effective intensity for obese subjects is still debated. Therefore, this study aims to prove the effect of intensity differences with aerobic-resistance combination exercise on increasing irisin and IL-6 levels in obese women.

    METHODS: A total of 32 obese women were selected as subjects and administered the interventions of low-intensity combination exercise (Q2), moderate-intensity combination exercise (Q3), and high-intensity combination exercise (Q4). ELISA was used to measure irisin and IL-6 levels in all samples. Statistical analysis used one-way ANOVA and Turkey's-Honest Significant Difference (HSD) post hoc test.

    RESULTS: The mean Δ IL-6 levels in the control groups (Q1), Q2, Q3, and Q4 were 0.27 ± 2.54, 2.07 ± 2.55, 5.99 ± 6.25, and 7.98 ± 2.82 pg/mL with (p=0.015). The mean Δ irisin levels were 0.06 ± 0.81 ng/mL in Q1, 0.59 ± 0.67 ng/mL in Q2, 1.99 ± 1.65 ng/mL in Q3, 4.63 ± 3.57 ng/mL in Q4 with (p=0.001).

    CONCLUSIONS: This study proved that all three types of combined exercise intensity increased myokine levels, such as irisin and IL-6. However, high-intensity combination exercise provided the most optimal improvement in myokine levels in obese women. Future studies are needed to design long-term exercise programs specifically for obese adolescent women using the findings from this study.

  2. Nazaruddin N, Afifah N, Bahi M, Susilawati S, Sani NDM, Esmaeili C, et al.
    F1000Res, 2021;10:422.
    PMID: 34527216 DOI: 10.12688/f1000research.52836.2
    A simple optical pH sensor using the active compound anthocyanin (ACN), derived Ruellia tuberosa L. flower immobilized in a pectin membrane matrix, was been fabricated and employed to monitor the freshness of tilapia fish at room temperature and 4 oC storage. The quantitative pH values were measured based on the UV-Vis spectroscopy absorbance. The optimum pectin weight and ACN concentrations were 0.1% and 0.025 mg/L. The sensor showed good sensitivity at 0.03 M phosphate buffer solution. The sensor's reproducibility was evaluated using 10 replicate sensors where a standard deviation of 0.045 or relative standard deviation of 9.15 was achieved. The sensor displayed an excellent response after 10 minutes of exposure, possessing a response stability for 10 consecutive days. The decrease in pH value of the Tilapia fish from 7.3 to 5 was observed in a 48 hour test, which can be used as the parameter when monitoring fish freshness. Overall, this reported optical pH sensor has a novelty as it could be used to monitor the rigor mortis phase of fish meat, which is useful in food industry.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links