Displaying all 3 publications

Abstract:
Sort:
  1. Hariyanto AP, Budiarti NT, Suprijanto, Ng KH, Haryanto F, Endarko
    Phys Eng Sci Med, 2023 Sep;46(3):1175-1185.
    PMID: 37253939 DOI: 10.1007/s13246-023-01283-y
    TMP is gradually becoming a fundamental element for quality assurance and control in ionizing and non-ionizing radiation imaging modalities as well as in the development of different techniques. This study aimed to evaluate and obtain polyvinyl chloride tissue mimicking material for dual-modality breast phantoms in mammography and ultrasound. Breast tissue equivalence was evaluated based on X-ray attenuation properties, speed of sound, attenuation, and acoustic impedance. There are six samples of PVC-plasticizer material with variations of PVC concentration and additives. The evaluation of X-ray attenuation was carried out using mammography from 23 to 35 kV, while the acoustic properties were assessed with mode A ultrasound and a transducer frequency of 5 MHz. A breast phantom was created from TMP material with tissue equivalence and was then evaluated using mammography as well as ultrasound to analyze its image quality. The results showed that samples A (PVC 5%, DOP 95%), B (PVC 7%, DOP 93%), C (PVC 10%, DOP 90%), E (PVC 7%, DOP 90%, graphite 3%), and F (PVC 7%, DOP 90%, silicone oil 3%) have the closest equivalent to the ACR breast phantom material with a different range of 0.01-1.39 in the 23-35 kV range. Based on the evaluation of the acoustic properties of ultrasound, A had high similarity to fat tissue with a difference of 0.03 (dB cm- 1 MHz- 1) and 0.07 (106 kg m- 2 s- 1), while B was close to the glandular tissue with a difference of 9.2 m s- 1. Multilayer breast phantom images' results showed gray levels in mammography and ultrasound modalities. Therefore, this study succeeded in establishing TMP material for mammography and ultrasound. It can also be used for simple quality assurance and control programs.
  2. Round WH, Jafari S, Kron T, Azhari HA, Chhom S, Hu Y, et al.
    Australas Phys Eng Sci Med, 2015 Sep;38(3):525.
    PMID: 26349560 DOI: 10.1007/s13246-015-0370-5
  3. Round WH, Jafari S, Kron T, Azhari HA, Chhom S, Hu Y, et al.
    Australas Phys Eng Sci Med, 2015 Sep;38(3):381-98.
    PMID: 25894289 DOI: 10.1007/s13246-015-0342-9
    The history of medical physics in Asia-Oceania goes back to the late nineteenth century when X-ray imaging was introduced, although medical physicists were not appointed until much later. Medical physics developed very quickly in some countries, but in others the socio-economic situation as such prevented it being established for many years. In others, the political situation and war has impeded its development. In many countries their medical physics history has not been well recorded and there is a danger that it will be lost to future generations. In this paper, brief histories of the development of medical physics in most countries in Asia-Oceania are presented by a large number of authors to serve as a record. The histories are necessarily brief; otherwise the paper would quickly turn into a book of hundreds of pages. The emphasis in each history as recorded here varies as the focus and culture of the countries as well as the length of their histories varies considerably.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links