Displaying all 2 publications

Abstract:
Sort:
  1. Hussain I, Kewate OJ, Hanan A, Bibi F, Javed MS, Rosaiah P, et al.
    ChemSusChem, 2024 Mar 12.
    PMID: 38470130 DOI: 10.1002/cssc.202400283
    MXenes, a two-dimensional (2D) material, exhibit excellent optical, electrical, chemical, mechanical, and electrochemical properties. Titanium-based MXene (Ti-MXene) has been extensively studied and serves as the foundation for 2D MXenes. However, other transition metals possess the potential to offer excellent properties in various applications. This comprehensive review aims to provide an overview of the properties, challenges, key findings, and applications of less-explored vanadium-based MXenes (V-MXenes) and their composites. The current trends in V-MXene and their composites for energy storage and conversion applications have been thoroughly summarized. Overall, this review offers valuable insights, identifies potential opportunities, and provides key suggestions for future advancements in the MXenes and energy storage/conversion applications.
  2. Hussain I, Amara U, Bibi F, Hanan A, Lakhan MN, Soomro IA, et al.
    Adv Colloid Interface Sci, 2024 Jan 04;324:103077.
    PMID: 38219341 DOI: 10.1016/j.cis.2023.103077
    Ti-MXene allows a range of possibilities to tune their compositional stoichiometry due to their electronic and electrochemical properties. Other than conventionally explored Ti-MXene, there have been ample opportunities for the non-Ti-based MXenes, especially the emerging Mo-based MXenes. Mo-MXenes are established to be remarkable with optoelectronic and electrochemical properties, tuned energy, catalysis, and sensing applications. In this timely review, we systematically discuss the various organized synthesis procedures, associated experimental tunning parameters, physiochemical properties, structural evaluation, stability challenges, key findings, and a wide range of applications of emerging Mo-MXene over Ti-MXenes. We also critically examined the precise control of Mo-MXenes to cater to advanced applications by comprehensively evaluating the summary of recent studies using artificial intelligence and machine learning tools. The critical future perspectives, significant challenges, and possible outlooks for successfully developing and using Mo-MXenes for various practical applications are highlighted.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links