The increasing demand for network applications, such as teleconferencing, multimedia messaging and mobile TV, which have diverse requirements, has resulted in the introduction of Long Term Evolution (LTE) by the Third Generation Partnership Project (3GPP). LTE networks implement resource allocation algorithms to distribute radio resource to satisfy the bandwidth and delay requirements of users. However, the scheduling algorithm problem of distributing radio resources to users is not well defined in the LTE standard and thus considerably affects transmission order. Furthermore, the existing radio resource algorithm suffers from performance degradation under prioritised conditions because of the minimum data rate used to determine the transmission order. In this work, a novel downlink resource allocation algorithm that uses quality of service (QoS) requirements and channel conditions to address performance degradation is proposed. The new algorithm is formulated as an optimisation problem where network resources are allocated according to users' priority, whereas the scheduling algorithm decides on the basis of users' channel status to satisfy the demands of QoS. Simulation is used to evaluate the performance of the proposed algorithm, and results demonstrate that it performs better than do all other algorithms according to the measured metrics.
Recently, Pulse Coupled Oscillator (PCO)-based travelling waves have attracted substantial attention by researchers in wireless sensor network (WSN) synchronization. Because WSNs are generally artificial occurrences that mimic natural phenomena, the PCO utilizes firefly synchronization of attracting mating partners for modelling the WSN. However, given that sensor nodes are unable to receive messages while transmitting data packets (due to deafness), the PCO model may not be efficient for sensor network modelling. To overcome this limitation, this paper proposed a new scheme called the Travelling Wave Pulse Coupled Oscillator (TWPCO). For this, the study used a self-organizing scheme for energy-efficient WSNs that adopted travelling wave biologically inspired network systems based on phase locking of the PCO model to counteract deafness. From the simulation, it was found that the proposed TWPCO scheme attained a steady state after a number of cycles. It also showed superior performance compared to other mechanisms, with a reduction in the total energy consumption of 25%. The results showed that the performance improved by 13% in terms of data gathering. Based on the results, the proposed scheme avoids the deafness that occurs in the transmit state in WSNs and increases the data collection throughout the transmission states in WSNs.
Due to the lack of dependency for routing initiation and an inadequate allocated sextant on responding messages, the secure geographic routing protocols for Wireless Sensor Networks (WSNs) have attracted considerable attention. However, the existing protocols are more likely to drop packets when legitimate nodes fail to respond to the routing initiation messages while attackers in the allocated sextant manage to respond. Furthermore, these protocols are designed with inefficient collection window and inadequate verification criteria which may lead to a high number of attacker selections. To prevent the failure to find an appropriate relay node and undesirable packet retransmission, this paper presents Secure Region-Based Geographic Routing Protocol (SRBGR) to increase the probability of selecting the appropriate relay node. By extending the allocated sextant and applying different message contention priorities more legitimate nodes can be admitted in the routing process. Moreover, the paper also proposed the bound collection window for a sufficient collection time and verification cost for both attacker identification and isolation. Extensive simulation experiments have been performed to evaluate the performance of the proposed protocol in comparison with other existing protocols. The results demonstrate that SRBGR increases network performance in terms of the packet delivery ratio and isolates attacks such as Sybil and Black hole.
Routing in Vehicular Ad hoc Networks (VANET) is a bit complicated because of the nature of the high dynamic mobility. The efficiency of routing protocol is influenced by a number of factors such as network density, bandwidth constraints, traffic load, and mobility patterns resulting in frequency changes in network topology. Therefore, Quality of Service (QoS) is strongly needed to enhance the capability of the routing protocol and improve the overall network performance. In this paper, we introduce a statistical framework model to address the problem of optimizing routing configuration parameters in Vehicle-to-Vehicle (V2V) communication. Our framework solution is based on the utilization of the network resources to further reflect the current state of the network and to balance the trade-off between frequent changes in network topology and the QoS requirements. It consists of three stages: simulation network stage used to execute different urban scenarios, the function stage used as a competitive approach to aggregate the weighted cost of the factors in a single value, and optimization stage used to evaluate the communication cost and to obtain the optimal configuration based on the competitive cost. The simulation results show significant performance improvement in terms of the Packet Delivery Ratio (PDR), Normalized Routing Load (NRL), Packet loss (PL), and End-to-End Delay (E2ED).
Mobile agent (MA), a part of the mobile computing paradigm, was recently proposed for data gathering in Wireless Sensor Networks (WSNs). The MA-based approach employs two algorithms: Single-agent Itinerary Planning (SIP) and Multi-mobile agent Itinerary Planning (MIP) for energy-efficient data gathering. The MIP was proposed to outperform the weakness of SIP by introducing distributed multi MAs to perform the data gathering task. Despite the advantages of MIP, finding the optimal number of distributed MAs and their itineraries are still regarded as critical issues. The existing MIP algorithms assume that the itinerary of the MA has to start and return back to the sink node. Moreover, each distributed MA has to carry the processing code (data aggregation code) to collect the sensory data and return back to the sink with the accumulated data. However, these assumptions have resulted in an increase in the number of MA's migration hops, which subsequently leads to an increase in energy and time consumption. In this paper, a spawn multi-mobile agent itinerary planning (SMIP) approach is proposed to mitigate the substantial increase in cost of energy and time used in the data gathering processes. The proposed approach is based on the agent spawning such that the main MA is able to spawn other MAs with different tasks assigned from the main MA. Extensive simulation experiments have been conducted to test the performance of the proposed approach against some selected MIP algorithms. The results show that the proposed SMIP outperforms the counterpart algorithms in terms of energy consumption and task delay (time), and improves the integrated energy-delay performance.
In the modern digital market flooded by nearly endless cyber-security hazards, sophisticated IDS (intrusion detection systems) can become invaluable in defending against intricate security threats. Sybil-Free Metric-based routing protocol for low power and lossy network (RPL) Trustworthiness Scheme (SF-MRTS) captures the nature of the biggest threat to the routing protocol for low-power and lossy networks under the RPL module, known as the Sybil attack. Sybil attacks build a significant security challenge for RPL networks where an attacker can distort at least two hop paths and disrupt network processes. Using such a new way of calculating node reliability, we introduce a cutting-edge approach, evaluating parameters beyond routing metrics like energy conservation and actuality. SF-MRTS works precisely towards achieving a trusted network by introducing such trust metrics on secure paths. Therefore, this may be considered more likely to withstand the attacks because of these security improvements. The simulation function of SF-MRTS clearly shows its concordance with the security risk management features, which are also necessary for the network's performance and stability maintenance. These mechanisms are based on the principles of game theory, and they allocate attractions to the nodes that cooperate while imposing penalties on the nodes that do not. This will be the way to avoid damage to the network, and it will lead to collaboration between the nodes. SF-MRTS is a security technology for emerging industrial Internet of Things (IoT) network attacks. It effectively guaranteed reliability and improved the networks' resilience in different scenarios.