The adsorption equilibrium time and effects of pH and concentration of ¹⁴C-labeled chlorpyrifos
O,O-diethyl O-(3, 5, 6 trichloro-2-pyridyl)-phosphorothiote in soil were investigated. Two types of Malaysian soil under oil palm were used in this study; namely clay loam and clay soil obtained from the Sungai Sedu and Kuala Lumpur International Airport (KLIA) Estates, respectively. Equilibrium studies of chlorpyrifos between the agricultural soil and the pesticide solution were conducted. Adsorption equilibrium time was achieved within 6 and 24 hours for clay loam and clay soil, respectively. It was found that chlorpyrifos adsorbed by the soil samples was characterized by an initial rapid adsorption after which adsorption remained approximately constant. The percentage of ¹⁴C-labeled chlorpyrifos adsorption on soil was found to be higher in clay loam than in clay soils. Results of the study demonstrated that pH affected the adsorption of chlorpyrifos on both clay loam and clay soils. The adsorption of chlorpyrifos on both types of soil was higher at low pH with the adsorption reduced as the pH increased. Results also suggest that chlorpyrifos sorption by soil is concentration dependent.
The purpose of this study was to determine the adsorption coefficient (Koc) of chlorpyrifos in clay soil by measuring the Freundlich adsorption coefficient (Kads(f)) and desorption coefficient (1/n value) of chlorpyrifos. It was found that the Freundlich adsorption coefficient (Kads(f)) and the linear regression (r 2 ) of the Freundlich adsorption isotherm for chlorpyrifos in the clay soil were 52.6 L/kg and 0.5344, respectively. Adsoprtion equilibrium time was achieved within 24 hours for clay soil. This adsoprtion equilibrium time was used to determine the effect of concentration on adsorption. The adsorption coefficient (Koc) of clay soil was found to be 2783 L/kg with an initial concentration solution of 1 µg/g, soil-solution ratio (1:5) at 30 o C when the equilibrium between the soil matrix and solution was 24 hours. The Kdes decreased over four repetitions of the desorption process. The chlorpyrifos residues may be strongly adsorbed onto the surface of clay.
The objective of this study was to develop a method for the determination of diuron (3-(3,4-dichlorophenyl)-1,1-dimethyl urea) residue in crude palm oil (CPO) and crude palm kernel oil (CPKO) matrices. The method involves the extraction of the herbicide from the oil matrix using low temperature precipitation and solid phase extraction techniques, detected by high performance liquid chromatography-ultra violet (HPLC-UV). The HPLC separation was carried out on an Ascentis
TMRP-Amide column and elution with acetonitrile (solvent A) and water-methanol (2:1, v/v) (solvent B) as a suitable solvent system, at ratio of 4:6 (v/v). The optimum volume of acetonitrile for the extraction of diuron was 30 mL and 4 mL was obtained as the optimum volume of the solvent for elution analyte through the SPE cartridge. A linear correlation was obtained for the concentration of diuron from 0.05–1.0 µg mL-1 with a correlation coefficient of 0.99. The recovery of diuron from CPO was 83.2–101.4% with a relative standard deviation of 1.4–9.9% and 79.4–87.9% with relative standard deviation of 0.9–5.6% for CPKO. The method detection limit and limit of quantification obtained were 0.018 µg g-1 and 0.058 µg g-1, respectively. The method was used to determine diuron residues in palm oil from different refineries situated at different locations throughout Malaysia.
The residual levels and persistence of thiram in the soil, water and oil palm seedling leaves were investigated under field conditions. The experimental plots were carried out on a clay loam soil and applied with three treatments namely; manufacturer's recommended dosage (25.6 g a.i. plot-1), manufacturer's double recommended dosage (51.2 g a.i. plot-1), and control (water) were applied. Thiram residues were detected in the soil from day 0 to day 3 in the range of 0.22-27.04 mg kg-1. Low concentrations of thiram were observed in the water and leave samples in the range of 0.27-2.52 mg L-1 and 1.34-12.28 mg kg-1, respectively. Results have shown that thiram has a rapid degradation and has less persistence due to climatic factors. These findings suggest that thiram is safe when applied at manufacturer's recommended dosage on oil palm seedlings due to low residual levels observed in soil and water bodies.
The mobility of (14)C-chlorpyrifos using soil TLC was investigated in this study. It was found that chlorpyrifos was not mobile in clay, clay loam and peat soil. The mobility of (14)C-chlorpyrifos and non-labelled chlorpyrifos was also tested with silica gel TLC using three types of developing solvent hexane (100%), hexane:ethyl acetate (95:5, v/v); and hexane:ethyl acetate (98:2, v/v). The study showed that both the (14)C-labelled and non-labelled chlorpyrifos have the same Retardation Factor (Rf) for different developing solvent systems. From the soil column study on mobility of chlorpyrifos, it was observed that no chlorpyrifos residue was found below 5 cm depth in three types of soil at simulation rainfall of 20, 50 and 100 mm. Therefore, the soil column and TLC studies have shown similar findings in the mobility of chlorpyrifos.
Ganoderma boninense is a fungus that can affect oil palm trees and cause a serious disease called the basal stem root (BSR). This disease causes the death of more than 80% of oil palm trees midway through their economic life and hexaconazole is one of the particular fungicides that can control this fungus. Hexaconazole can be applied by the soil drenching method and it will be of interest to know the concentration of the residue in the soil after treatment with respect to time. Hence, a field study was conducted in order to determine the actual concentration of hexaconazole in soil. In the present paper, a new approach that can be used to predict the concentration of pesticides in the soil is proposed. The statistical analysis revealed that the Exploratory Data Analysis (EDA) techniques would be appropriate in this study. The EDA techniques were used to fit a robust resistant model and predict the concentration of the residue in the topmost layer of the soil.
Hexaconazole is a potential fungicide to be used in the oil palm plantation for controlling the basal stem root (BSR) disease caused by Ganoderma boninense. Therefore, the dissipation rate of hexaconazole in an oil palm agroecosystem under field conditions was studied. Two experimental plots were treated with hexaconazole at the recommended dosage of 4.5 g a.i. palm(-1) (active ingredient) and at double the recommended dosage (9.0 g a.i. palm(-1)), whilst one plot was untreated as control. The residue of hexaconazole was detected in soil samples in the range of 2.74 to 0.78 and 7.13 to 1.66 mg kg(-1) at the recommended and double recommended dosage plots, respectively. An initial relatively rapid dissipation rate of hexaconazole residues occurred but reduced with time. The dissipation of hexaconazole in soil was described using first-order kinetics with the value of coefficient regression (r (2) > 0.8). The results indicated that hexaconazole has moderate persistence in the soil and the half-life was found to be 69.3 and 86.6 days in the recommended and double recommended dosage plot, respectively. The results obtained highlight that downward movement of hexaconazole was led by preferential flow as shown in image analysis. It can be concluded that varying soil conditions, environmental factors, and pesticide chemical properties of hexaconazole has a significant impact on dissipation of hexaconazole in soil under humid conditions.