Displaying all 3 publications

Abstract:
Sort:
  1. Abdulhameed A, Halim MM, Halin IA
    Nanotechnology, 2023 Mar 31;34(24).
    PMID: 36921341 DOI: 10.1088/1361-6528/acc46c
    Carbon nanotubes (CNTs) are nominated to be the successor of several semiconductors and metals due to their unique physical and chemical properties. It has been concerning that the anisotropic and low controllability of CNTs impedes their adoption in commercial applications. Dielectrophoresis (DEP) is known as the electrokinetics motion of polarizable nanoparticles under the influence of nonuniform electric fields. The uniqueness of this phenomenon allows DEP to be employed as a novel method to align, assemble, separate, and manipulate CNTs suspended in liquid mediums. This article begins with a brief overview of CNT structure and production, with the emphasize on their electrical properties and response to electric fields. The DEP phenomenon as a CNT alignment method is demonstrated and graphically discussed, along with its theory, procedure, and parameters. We also discussed the side forces that arise in DEP systems and how they negatively or positively affect the CNT alignment. The article concludes with a brief review of CNT-based devices fabricated using DEP, as well as the method's limitations and future prospects.
  2. Farhat OF, Halim MM, Abdullah MJ, Ali MK, Allam NK
    PMID: 25821712 DOI: 10.3762/bjnano.6.73
    We report a facile synthesis of zinc oxide (ZnO) nanorod arrays using an optimized, chemical bath deposition method on glass, PET and Si substrates. The morphological and structural properties of the ZnO nanorod arrays were investigated using various techniques such as field emission scanning electron microscopy (FESEM) and X-ray diffraction (XRD) measurements, which revealed the formation of dense ZnO nanorods with a single crystal, hexagonal wurtzite structure. The aspect ratio of the single-crystal ZnO nanorods and the growth rate along the (002) direction was found to be sensitive to the substrate type. The lattice constants and the crystallite size of the fabricated ZnO nanorods were calculated based on the XRD data. The obtained results revealed that the increase in the crystallite size is strongly associated with the growth conditions with a minor dependence on the type of substrate. The Raman spectroscopy measurements confirmed the existence of a compressive stress in the fabricated ZnO nanorods. The obtained results illustrated that the growth of high quality, single-crystal ZnO nanorods can be realized by adjusting the synthesis conditions.
  3. Alrajhi AH, Ahmed NM, Halim MM, Altowyan AS, Azmi MN, Almessiere MA
    Materials (Basel), 2023 Jun 21;16(13).
    PMID: 37444824 DOI: 10.3390/ma16134510
    This paper reports the optical properties of zinc oxide nanofilm fabricated by using organic natural products from Salvia officinalis leaves (SOL) extract and discusses the effect of the nanocrystal (NC) structure (nanoyarn and nanomat-like structure) on nanofilm optical properties. The surface-active layer of the nanofilm of ZnO nanoparticles (ZnO NPs) was passivated with natural organic SOL leaves hydrothermally, then accumulated on zinc oxide nanorods (ZnO NRs). The nanofilms were fabricated (with and without PEO) on glass substrate (at 85 °C for 16 h) via chemical solution deposition (CSD). The samples were characterized by UV-vis, PL, FESEM, XRD, and TEM measurements. TEM micrographs confirmed the nucleation of ZnO NPs around 4 nm and the size distribution at 1.2 nm of ZnO QDs as an influence of the quantum confinement effect (QCE). The nanofilms fabricated with SOL surfactant (which works as a capping agent for ZnO NPs) represent distinct optoelectronic properties when compared to bulk ZnO. FESEM images of the nanofilms revealed nanoyarn and nanomat-like structures resembling morphologies. The XRD patterns of the samples exhibited the existence of ZnO nanocrystallites (ZnO NCs) with (100), (002), and (101) growth planes. The nanofilms fabricated represented a distinct optical property through absorption and broad emission, as the optical energy band gap reduced as the nanofilms annealed (at 120 ℃). Based on the obtained results, it was established that phytochemicals extracted from organic natural SOL leaves have a distinct influence on zoic oxide nanofilm fabrication, which may be useful for visible light spectrum trapping. The nanofilms can be used in photovoltaic solar cell applications.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links