Displaying all 3 publications

Abstract:
Sort:
  1. Steffen A, Huerta JM, Weiderpass E, Bueno-de-Mesquita HB, May AM, Siersema PD, et al.
    Int J Cancer, 2015 Aug 01;137(3):646-57.
    PMID: 25598323 DOI: 10.1002/ijc.29432
    General obesity, as reflected by BMI, is an established risk factor for esophageal adenocarcinoma (EAC), a suspected risk factor for gastric cardia adenocarcinoma (GCC) and appears unrelated to gastric non-cardia adenocarcinoma (GNCC). How abdominal obesity, as commonly measured by waist circumference (WC), relates to these cancers remains largely unexplored. Using measured anthropometric data from 391,456 individuals from the European Prospective Investigation into Cancer and Nutrition (EPIC) study and 11 years of follow-up, we comprehensively assessed the association of anthropometric measures with risk of EAC, GCC and GNCC using multivariable proportional hazards regression. One hundred twenty-four incident EAC, 193 GCC and 224 GNCC were accrued. After mutual adjustment, BMI was unrelated to EAC, while WC showed a strong positive association (highest vs. lowest quintile HR = 1.19; 95% CI, 0.63-2.22 and HR = 3.76; 1.72-8.22, respectively). Hip circumference (HC) was inversely related to EAC after controlling for WC, while WC remained positively associated (HR = 0.35; 0.18-0.68, and HR=4.10; 1.94-8.63, respectively). BMI was not associated with GCC or GNCC. WC was related to higher risks of GCC after adjustment for BMI and more strongly after adjustment for HC (highest vs. lowest quintile HR = 1.91; 1.09-3.37, and HR = 2.23; 1.28-3.90, respectively). Our study demonstrates that abdominal, rather than general, obesity is an indisputable risk factor for EAC and also provides evidence for a protective effect of gluteofemoral (subcutaneous) adipose tissue in EAC. Our study further shows that general obesity is not a risk factor for GCC and GNCC, while the role of abdominal obesity in GCC needs further investigation.
  2. Gasull M, Pumarega J, Kiviranta H, Rantakokko P, Raaschou-Nielsen O, Bergdahl IA, et al.
    Environ Res, 2019 Feb;169:417-433.
    PMID: 30529143 DOI: 10.1016/j.envres.2018.11.027
    BACKGROUND: The use of biomarkers of environmental exposure to explore new risk factors for pancreatic cancer presents clinical, logistic, and methodological challenges that are also relevant in research on other complex diseases.

    OBJECTIVES: First, to summarize the main design features of a prospective case-control study -nested within the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort- on plasma concentrations of persistent organic pollutants (POPs) and pancreatic cancer risk. And second, to assess the main methodological challenges posed by associations among characteristics and habits of study participants, fasting status, time from blood draw to cancer diagnosis, disease progression bias, basis of cancer diagnosis, and plasma concentrations of lipids and POPs. Results from etiologic analyses on POPs and pancreatic cancer risk, and other analyses, will be reported in future articles.

    METHODS: Study subjects were 1533 participants (513 cases and 1020 controls matched by study centre, sex, age at blood collection, date and time of blood collection, and fasting status) enrolled between 1992 and 2000. Plasma concentrations of 22 POPs were measured by gas chromatography - triple quadrupole mass spectrometry (GC-MS/MS). To estimate the magnitude of the associations we calculated multivariate-adjusted odds ratios by unconditional logistic regression, and adjusted geometric means by General Linear Regression Models.

    RESULTS: There were differences among countries in subjects' characteristics (as age, gender, smoking, lipid and POP concentrations), and in study characteristics (as time from blood collection to index date, year of last follow-up, length of follow-up, basis of cancer diagnosis, and fasting status). Adjusting for centre and time of blood collection, no factors were significantly associated with fasting status. Plasma concentrations of lipids were related to age, body mass index, fasting, country, and smoking. We detected and quantified 16 of the 22 POPs in more than 90% of individuals. All 22 POPs were detected in some participants, and the smallest number of POPs detected in one person was 15 (median, 19) with few differences by country. The highest concentrations were found for p,p'-DDE, PCBs 153 and 180 (median concentration: 3371, 1023, and 810 pg/mL, respectively). We assessed the possible occurrence of disease progression bias (DPB) in eight situations defined by lipid and POP measurements, on one hand, and by four factors: interval from blood draw to index date, tumour subsite, tumour stage, and grade of differentiation, on the other. In seven of the eight situations results supported the absence of DPB.

    CONCLUSIONS: The coexistence of differences across study centres in some design features and participant characteristics is of relevance to other multicentre studies. Relationships among subjects' characteristics and among such characteristics and design features may play important roles in the forthcoming analyses on the association between plasma concentrations of POPs and pancreatic cancer risk.

  3. Jahangir CA, Page DB, Broeckx G, Gonzalez CA, Burke C, Murphy C, et al.
    J Pathol, 2024 Mar;262(3):271-288.
    PMID: 38230434 DOI: 10.1002/path.6238
    Recent advances in the field of immuno-oncology have brought transformative changes in the management of cancer patients. The immune profile of tumours has been found to have key value in predicting disease prognosis and treatment response in various cancers. Multiplex immunohistochemistry and immunofluorescence have emerged as potent tools for the simultaneous detection of multiple protein biomarkers in a single tissue section, thereby expanding opportunities for molecular and immune profiling while preserving tissue samples. By establishing the phenotype of individual tumour cells when distributed within a mixed cell population, the identification of clinically relevant biomarkers with high-throughput multiplex immunophenotyping of tumour samples has great potential to guide appropriate treatment choices. Moreover, the emergence of novel multi-marker imaging approaches can now provide unprecedented insights into the tumour microenvironment, including the potential interplay between various cell types. However, there are significant challenges to widespread integration of these technologies in daily research and clinical practice. This review addresses the challenges and potential solutions within a structured framework of action from a regulatory and clinical trial perspective. New developments within the field of immunophenotyping using multiplexed tissue imaging platforms and associated digital pathology are also described, with a specific focus on translational implications across different subtypes of cancer. © 2024 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links