Displaying all 2 publications

Abstract:
Sort:
  1. Tang TL, Salleh H, Sadiq MI, Mohd Sabri MA, Ahmad MIM, Ghopa WAW
    Materials (Basel), 2023 May 25;16(11).
    PMID: 37297077 DOI: 10.3390/ma16113942
    Nanofluids have attracted significant attention from researchers due to their ability to significantly enhance heat transfer, especially in jet impingement flows, which can improve their cooling performance. However, there is a lack of research on the use of nanofluids in multiple jet impingements, both in terms of experimental and numerical studies. Therefore, further investigation is necessary to fully understand the potential benefits and limitations of using nanofluids in this type of cooling system. Thus, an experimental and numerical investigation was performed to study the flow structure and heat transfer behavior of multiple jet impingement using MgO-water nanofluids with a 3 × 3 inline jet array at a nozzle-to-plate distance of 3 mm. The jet spacing was set to 3, 4.5, and 6 mm; the Reynolds number varies from 1000 to 10,000; and the particle volume fraction ranges from 0% to 0.15%. A 3D numerical analysis using ANSYS Fluent with SST k-ω turbulent model was presented. The single-phase model is adopted to predict the thermal physical nanofluid. The flow field and temperature distribution were investigated. Experimental results show that a nanofluid can provide a heat transfer enhancement at a small jet-to-jet spacing using a high particle volume fraction under a low Reynolds number; otherwise, an adverse effect on heat transfer may occur. The numerical results show that the single-phase model can predict the heat transfer trend of multiple jet impingement using nanofluids correctly but with significant deviation from experimental results because it cannot capture the effect of nanoparticles.
  2. Hussain S, Ghopa WAW, Singh SSK, Azman AH, Abdullah S, Harun Z, et al.
    Materials (Basel), 2022 Jul 14;15(14).
    PMID: 35888355 DOI: 10.3390/ma15144888
    Vibration fatigue characteristics are critical for rotating machinery components such as turbine rotor blades. Lattice structures are gaining popularity in engineering applications due to their unique ability to reduce weight and improve the mechanical properties. This study is an experimental investigation of octet-truss lattice structure utilization in turbine rotor blades for weight reduction and to improve vibration fatigue characteristics. One completely solid and three lattice infilled blades with variable strut thickness were manufactured via additive manufacturing. Both free and forced experimental vibration analyses were performed on the blades to investigate their modal and vibration fatigue characteristics. The blades were subjected to random vibration using a vibration shaker. The response was measured using a triaxial accelerometer in terms of vibration acceleration time histories in the X, Y, and Z directions. Results indicate a weight reduction of up to 24.91% and enhancement in the first natural frequency of up to 5.29% were achieved using lattice infilled blades. The fatigue life of the blades was investigated using three frequency domain approaches, namely, Lalanne, Dirlik and narrow band. The fatigue life results indicate that the 0.25 mm lattice blade exhibits the highest fatigue life, while the solid blade exhibits the lowest fatigue life of all four blades. The fatigue life of the 0.25 mm lattice blade was 1822-, 1802-, and 1819- fold higher compared to that of the solid blade, using the Lalanne, Dirlik, and narrow-band approaches, respectively. These results can serve as the first step towards the utilization of lattice structures in turbine blades, with thermal analysis as the next step. Therefore, apart from being light weight, the octet-truss lattice infilled blades exhibited superior vibration fatigue characteristics to vibration loads, thereby making them a potential replacement for solid blades in turbine rotors.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links