This study was conducted to characterize the growth of and aflatoxin production by Aspergillus flavus on paddy and to develop kinetic models describing the growth rate as a function of water activity (a(w)) and temperature.
Mycotoxins, harmful compounds produced by fungal pathogens, pose a severe threat to food safety and consumer health. Some commonly produced mycotoxins such as aflatoxins, ochratoxin A, fumonisins, trichothecenes, zearalenone, and patulin have serious health implications in humans and animals. Mycotoxin contamination is particularly concerning in regions heavily reliant on staple foods like grains, cereals, and nuts. Preventing mycotoxin contamination is crucial for a sustainable food supply. Chromatographic methods like thin layer chromatography (TLC), gas chromatography (GC), high-performance liquid chromatography (HPLC), and liquid chromatography coupled with a mass spectrometer (LC/MS), are commonly used to detect mycotoxins; however, there is a need for on-site, rapid, and cost-effective detection methods. Currently, enzyme-linked immunosorbent assays (ELISA), lateral flow assays (LFAs), and biosensors are becoming popular analytical tools for rapid detection. Meanwhile, preventing mycotoxin contamination is crucial for food safety and a sustainable food supply. Physical, chemical, and biological approaches have been used to inhibit fungal growth and mycotoxin production. However, new strains resistant to conventional methods have led to the exploration of novel strategies like cold atmospheric plasma (CAP) technology, polyphenols and flavonoids, magnetic materials and nanoparticles, and natural essential oils (NEOs). This paper reviews recent scientific research on mycotoxin toxicity, explores advancements in detecting mycotoxins in various foods, and evaluates the effectiveness of innovative mitigation strategies for controlling and detoxifying mycotoxins.
The aim of this study was to model the radial growth rate and to assess aflatoxin production by Aspergillus flavus as a function of water activity (a(w) 0.82 to 0.92) and temperature (12 to 42 °C) on polished and brown rice. The growth of the fungi, expressed as colony diameter (mm) was measured daily, and the aflatoxins were analyzed using HPLC with a fluorescence detector. The growth rates were estimated using the primary model of Baranyi, which describes the change in colony radius as a function of time. Total of 2 secondary models were used to describe the combined effects of a(w) and temperature on the growth rates. The models were validated using independent experimental data. Linear Arrhenius-Davey model proved to be the best predictor of A. flavus growth rates on polished and brown rice followed by polynomial model. The estimated optimal growth temperature was around 30 °C. A. flavus growth and aflatoxins were not detected at 0.82 a(w) on polished rice while growth and aflatoxins were detected at this a(w) between 25 and 35 °C on brown rice. The highest amounts of toxins were formed at the highest a(w) values (0.90 to 0.92) at a temperature of 20 °C after 21 d of incubation on both types of rice. Nevertheless, the consistencies of toxin production within a wider range of a(w) values occurred between 25 to 30 °C. Brown rice seems to support A. flavus growth and aflatoxin production more than the polished rice.
Aflatoxins (AFs) are highly toxic and cancer-causing compounds, predominantly synthesized by the Aspergillus species. AFs biosynthesis is a lengthy process that requires as minimum as 30 genes grouped inside 75 kilobytes (kB) of gene clusters, which are regulated by specific transcription factors, including aflR, aflS, and some general transcription factors. This paper summarizes the status of research on characterizing structural and regulatory genes associated with AF production and their roles in aflatoxigenic fungi, particularly Aspergillus flavus and A. parasiticus, and enhances the current understanding of AFs that adversely affect humans and animals with a great emphasis on toxicity and preventive methods.
Understanding the water sorption characteristics of cereal is extremely essential for optimizing the drying process and ensuring storage stability. Water relation of rough rice was studied at 20, 30, 40 and 50 °C over relative humidity (RH.) between 0.113 and 0.976 using the gravimetric technique. The isotherms displayed the general sigmoid, Type II pattern and exhibited the phenomenon of hysteresis where it was more pronounced at lower temperatures. The sorption characteristics were temperature dependence where the sorption capacity of the paddy increased as the temperature was decreased at fixed (RH). Among the models assessed for their ability to fit the sorption data, Oswin equation was the best followed by the third order polynomial, GAB, Smith, Chung-Pfost, and Henderson models. The monolayer moisture content was higher for desorption than adsorption and tend to decrease with the increase in temperature. Given the temperature dependence of the sorption isotherms the isosteric heats of sorption were calculated using Claussius-Clapeyron equation. The net isosteric heats decreased as the moisture content was increased and heats of desorption were greater than that of adsorption.
Recently, many cases related to viral gastroenteritis outbreaks have been reported all over the world. Noroviruses are found to be leading as the major cause of outbreaks of acute gastroenteritis. Patients with the acute gastroenteritis normally found to be positive with norovirus when stools and vomit were analyzed. This paper reviews various activities and previous reports that describe norovirus contaminated in various food matrixes and relationship between food handlers. Lately, a numbers of norovirus outbreaks have been reported which are involved fresh produce (such as vegetables, fruits), shellfish and prepared food. Food produces by infected food handlers may therefore easily contaminated. In addition, food that required much handling and have been eaten without heat treatment gave the high risk for getting foodborne illnesses. The standard method for detection of norovirus has already been available for stool samples. However, only few methods for detection of norovirus in food samples have been developed until now.
In this study, endoglucanase was produced from oil palm empty fruit bunch (OPEFB) by a locally isolated aerobic bacterium, Bacillus pumilus EB3. The effects of the fermentation parameters such as initial pH, temperature, and nitrogen source on the endoglucanase production were studied using carboxymethyl cellulose (CMC) as the carbon source. Endoglucanase from B. pumilus EB3 was maximally secreted at 37 degrees C, initial pH 7.0 with 10 g/l of CMC as carbon source, and 2 g/l of yeast extract as organic nitrogen source. The activity recorded during the fermentation was 0.076 U/ml. The productivity of the enzyme increased twofold when 2 g/l of yeast extract was used as the organic nitrogen supplement as compared to the non-supplemented medium. An interesting finding from this study is that pretreated OPEFB medium showed comparable results to CMC medium in terms of enzyme production with an activity of 0.063 U/ml. As OPEFB is an abundant solid waste at palm oil mills, it has the potential of acting as a substrate in cellulase production.
We quantified Campylobacter jejuni transferred from naturally contaminated raw chicken fillets and skins to similar cooked chicken parts via standard rubberwood (RW) and polyethylene cutting boards (PE).
The aim of the present study was to examine the prevalence of thermophilic Campylobacter spp. (Campylobacter jejuni and Campylobacter coli) in soil, poultry manure, irrigation water, and freshly harvested vegetables from vegetable farms in Malaysia. C. jejuni was detected in 30.4% and 2.7% of the soil samples, 57.1% and 0% of the manure samples, and 18.8% and 3% of the vegetable samples from farm A and farm B, respectively, when using the MPNPCR method. Campylobacter spp. was not found in any of the irrigation water samples tested. Therefore, the present results indicate that the aged manure used by farm A was more contaminated than the composted manure used by farm B. Mostly, the leafy and root vegetables were contaminated. C. coli was not detected in any of the samples tested in the current study. Both farms tested in this study were found to be contaminated by campylobacters, thereby posing a potential risk for raw vegetable consumption in Malaysia. The present results also provide baseline data on Campylobacter contamination at the farm level.
The purpose of this study was to investigate the biosafety of Vibrio parahaemolyticus in raw salad vegetables at wet market and supermarket in Malaysia. A combination of Most Probable Number - Polymerase Chain Reaction (MPN-PCR) method was applied to detect the presence of V. parahaemolyticus and to enumerate their density in the food samples. The study analyzed 276 samples of common vegetables eaten raw in Malaysia (Wild cosmos = 8; Japanese parsley = 21; Cabbage = 30; Lettuce = 16; Indian pennywort = 17; Carrot = 31; Sweet potato = 29; Tomato = 38; Cucumber = 28; Four winged bean = 26; Long bean = 32). The samples were purchased from two supermarkets (A and B) and two wet markets (C and D). The occurrence of V. parahaemolyticus detected was 20.65%, with higher frequency of V. parahaemolyticus in vegetables obtained from wet markets (Wet market C = 27.27%Wet Market D = 32.05%) compared to supermarkets (Supermarket A = 1.64%; Supermarket B = 16.67%). V. parahaemolyticus was most prevalent in Indian pennywort (41.18%). The density of V. parahaemolyticus in all the samples ranged from <3 up to >2400 MPN/g, mostly <3 MPN/g concentration. Raw vegetables from wet markets contained higher levels of V. parahaemolyticus compared to supermarkets. V. parahaemolyticus were present in raw vegetables although in low numbers. The results suggest that raw vegetables act as a transmission route for V. parahaemolyticus. This study will be the first biosafety assessment of V. parahaemolyticus in raw vegetables in Malaysia.
The main aim of this study was to combine the techniques of most probable number (MPN) and polymerase chain reaction (PCR) for quantifying the prevalence and numbers of Campylobacter spp. in ulam, a popular Malaysian salad dish, from a traditional wet market and two modern supermarkets in Selangor, Malaysia. A total of 309 samples of raw vegetables which are used in ulam were examined in the study. The prevalences of campylobacters in raw vegetables were, for supermarket I, Campylobacter spp., 51.9%; Campylobacter jejuni, 40.7%; and Campylobacter coli, 35.2%: for supermarket II, Campylobacter spp., 67.7%; C. jejuni, 67.7%; and C. coli, 65.7%: and for the wet market, Campylobacter spp., 29.4%; C. jejuni, 25.5%; and C. coli, 22.6%. In addition Campylobacter fetus was detected in 1.9% of raw vegetables from supermarket I. The maximum numbers of Campylobacter spp. in raw vegetables from supermarkets and the wet market were >2400 and 460 MPN/g, respectively.
Campylobacter jejuni was found to occur at high prevalence in the raw salad vegetables examined. Previous reports describe cross-contamination involving meat; here we investigated the occurrence of cross-contamination and decontamination events in the domestic kitchen via C. jejuni-contaminated vegetables during salad preparation. This is the first report concerning quantitative cross-contamination and decontamination involving naturally contaminated produce. The study was designed to simulate the real preparation of salad in a household kitchen, starting with washing the vegetables in tap water, then cutting the vegetables on a cutting board, followed by slicing cucumber and blanching (heating in hot water) the vegetables in 85 degrees C water. Vegetables naturally contaminated with C. jejuni were used throughout the simulation to attain realistic quantitative data. The mean of the percent transfer rates for C. jejuni from vegetable to wash water was 30.1 to 38.2%; from wash water to cucumber, it was 26.3 to 47.2%; from vegetables to cutting board, it was 1.6 to 10.3%; and from cutting board to cucumber, it was 22.6 to 73.3%. The data suggest the wash water and plastic cutting board as potential risk factors in C. jejuni transmission to consumers. Washing of the vegetables with tap water caused a 0.4-log reduction of C. jejuni attached to the vegetables (most probable number/gram), while rapid blanching reduced the number of C. jejuni organisms to an undetectable level.
Salmonellosis outbreaks involving typhoid fever and human gastroenteritis are important diseases in tropical countries where hygienic conditions are often not maintained. A rapid and sensitive method to detect Salmonella spp., Salmonella Typhi and Salmonella Typhimurium is needed to improve control and surveillance of typhoid fever and Salmonella gastroenteritis. Our objective was the concurrent detection and differentiation of these food-borne pathogens using a multiplex PCR. We therefore designed and optimized a multiplex PCR using three specific PCR primer pairs for the simultaneous detection of these pathogens. The concentration of each of the primer pairs, magnesium chloride concentration, and primer annealing temperature were optimized before verification of the specificity of the primer pairs. The target genes produced amplicons at 429 bp, 300 bp and 620 bp which were shown to be 100% specific to each target bacterium, Salmonella spp., Salmonella Typhi and Salmonella Typhimurium, respectively.
We conducted a systematic characterization of CYP2C9 variants in 61 Orang Asli and 96 Singaporean Malays using the whole genome sequences data and compared the variants with the other 11 HapMap populations. The frequency of rs1057910 (CYP2C9*3) is the highest in the Orang Asli compared to other populations. Three alleles with clinical implication were detected in the Orang Asli while 2 were found in the Singaporean Malays. Large numbers of the Orang Asli are predicted to have reduced metabolic capacity and therefore they would require a lower dose of drugs which are metabolized by CYP2C9. They are also at increased risks of adverse effects and therapeutic failures. A large number of CYP2C9 variants in the Orang Asli were not in the Hardy Weinberg Equilibrium which could be due to small sample size or mutations that disrupt the equilibrium of allele frequencies. In conclusion, different polymorphism patterns, allele frequencies, genotype frequencies and LD blocks are observed between the Orang Asli, the Singaporean Malays and the other populations. The study provided new information on the genetic polymorphism of CYP2C9 which is important for the implementation of precision medicine for the Orang Asli.