Displaying 1 publication

Abstract:
Sort:
  1. Hamidi H, Sharifi Haddad A, Mohammadian E, Rafati R, Azdarpour A, Ghahri P, et al.
    Ultrason Sonochem, 2017 Mar;35(Pt A):243-250.
    PMID: 27720591 DOI: 10.1016/j.ultsonch.2016.09.026
    CO2flooding process as a common enhanced oil recovery method may suffer from interface instability due to fingering and gravity override, therefore, in this study a method to improve the performance of CO2flooding through an integrated ultraosund-CO2flooding process is presented. Ultrasonic waves can deliver energy from a generator to oil and affect its properties such as internal energy and viscosity. Thus, a series of CO2flooding experiments in the presence of ultrasonic waves were performed for controlled and uncontrolled temperature conditions. Results indicate that oil recovery was improved by using ultrasound-assisted CO2flooding compared to conventional CO2flooding. However, the changes were more pronounced for uncontrolled temperature conditions of ultrasound-assisted CO2flooding. It was found that ultrasonic waves create a more stable interface between displacing and displaced fluids that could be due to the reductions in viscosity, capillary pressure and interfacial tension. In addition, higher CO2injection rates, increases the recovery factor in all the experiments which highlights the importance of injection rate as another factor on reduction of the fingering effects and improvement of the sweep efficiency.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links