Displaying all 2 publications

Abstract:
Sort:
  1. Soltanieh S, Salavatizadeh M, Gaman MA, Kord Varkaneh H, Tan SC, Prabahar K, et al.
    Food Sci Nutr, 2024 Jul;12(7):4581-4593.
    PMID: 39055215 DOI: 10.1002/fsn3.4146
    Hepcidin has a crucial role in iron homeostasis upon inflammatory conditions such as inflammatory bowel disease (IBD). Thus, we conducted a systematic review and meta-analysis to determine the overall association between serum hepcidin concentrations and IBD. Based on the preferred reporting items for systematic review and meta-analysis (PRISMA) protocols, an electronic literature search was conducted on PubMed/MEDLINE, Scopus, and Web of Science until June 2020. Studies were deemed eligible for inclusion if they met the following criteria: (1) diagnosis of IBD, (2) observational design, and (3) measured serum hepcidin and prohepcidin concentrations in IBD patients and control group. Overall, 10 studies including 1184 participants were evaluated. Random-effects meta-analysis revealed that subjects with IBD had 7.22 ng/mL (95% CI: 2.10, 12.34; p = .006) higher serum hepcidin concentrations compared to control groups. A nonsignificantly lower serum prohepcidin concentration (0.522 ng/mL, 95% CI: -1.983 to 0.939; p = .484) was found for IBD patients compared to healthy subjects. However, there was significant heterogeneity among the studies regarding both hepcidin (I 2 = 98%, p 
  2. Varkaneh Kord H, M Tinsley G, O Santos H, Zand H, Nazary A, Fatahi S, et al.
    Clin Nutr, 2021 04;40(4):1811-1821.
    PMID: 33158587 DOI: 10.1016/j.clnu.2020.10.034
    BACKGROUND & AIMS: Fasting and energy-restricted diets have been evaluated in several studies as a means of improving cardiometabolic biomarkers related to body fat loss. However, further investigation is required to understand potential alterations of leptin and adiponectin concentrations. Thus, we performed a systematic review and meta-analysis to derive a more precise estimate of the influence of fasting and energy-restricted diets on leptin and adiponectin levels in humans, as well as to detect potential sources of heterogeneity in the available literature.

    METHODS: A comprehensive systematic search was performed in Web of Science, PubMed/MEDLINE, Cochrane, SCOPUS and Embase from inception until June 2019. All clinical trials investigating the effects of fasting and energy-restricted diets on leptin and adiponectin in adults were included.

    RESULTS: Twelve studies containing 17 arms and a total of 495 individuals (intervention = 249, control = 246) reported changes in serum leptin concentrations, and 10 studies containing 12 arms with a total of 438 individuals (intervention = 222, control = 216) reported changes in serum adiponectin concentrations. The combined effect sizes suggested a significant effect of fasting and energy-restricted diets on leptin concentrations (WMD: -3.690 ng/ml, 95% CI: -5.190, -2.190, p ≤ 0.001; I2 = 84.9%). However, no significant effect of fasting and energy-restricted diets on adiponectin concentrations was found (WMD: -159.520 ng/ml, 95% CI: -689.491, 370.451, p = 0.555; I2 = 74.2%). Stratified analyses showed that energy-restricted regimens significantly increased adiponectin (WMD: 554.129 ng/ml, 95% CI: 150.295, 957.964; I2 = 0.0%). In addition, subsequent subgroup analyses revealed that energy restriction, to ≤50% normal required daily energy intake, resulted in significantly reduced concentrations of leptin (WMD: -4.199 ng/ml, 95% CI: -7.279, -1.118; I2 = 83.9%) and significantly increased concentrations of adiponectin (WMD: 524.04 ng/ml, 95% CI: 115.618, 932.469: I2 = 0.0%).

    CONCLUSION: Fasting and energy-restricted diets elicit significant reductions in serum leptin concentrations. Increases in adiponectin may also be observed when energy intake is ≤50% of normal requirements, although limited data preclude definitive conclusions on this point.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links