METHODS: A total of 715 incident PD cases were ascertained in a cohort of 220 494 individuals from NeuroEPIC4PD, a prospective European population-based cohort study including 13 centres in eight countries. Smoking habits were recorded at recruitment. We analysed smoking status, duration, and intensity and exposure to passive smoking in relation to PD onset.
RESULTS: Former smokers had a 20% decreased risk and current smokers a halved risk of developing PD compared with never smokers. Strong dose-response relationships with smoking intensity and duration were found. Hazard ratios (HRs) for smoking <20 years were 0.84 [95% confidence interval (CI) 0.67-1.07], 20-29 years 0.73 (95% CI 0.56-0.96) and >30 years 0.54 (95% CI 0.43-0.36) compared with never smokers. The proportional hazard assumption was verified, showing no change of risk over time, arguing against a delaying effect. Reverse causality was disproved by the consistency of dose-response relationships among former and current smokers. The inverse association between passive smoking and PD, HR 0.70 (95% CI 0.49-0.99) ruled out the effect of unmeasured confounding.
CONCLUSIONS: These results are highly suggestive of a true causal link between smoking and PD, although it is not clear which is the chemical compound in cigarette smoking responsible for the biological effect.
METHODS: This study was conducted within the European Prospective Investigation into Nutrition and Cancer cohort, comprising male and female participants from 10 European countries. Between 1992 and 2000, there were 477,312 participants without cancer who completed a dietary questionnaire and were followed up to determine pancreatic cancer incidence. Coffee and tea intake was calibrated with a 24-hour dietary recall. Adjusted hazard ratios (HRs) were computed using multivariable Cox regression.
RESULTS: During a mean follow-up period of 11.6 y, 865 first incidences of pancreatic cancers were reported. When divided into fourths, neither total intake of coffee (HR, 1.03; 95% confidence interval [CI], 0.83-1.27; high vs low intake), decaffeinated coffee (HR, 1.12; 95% CI, 0.76-1.63; high vs low intake), nor tea were associated with risk of pancreatic cancer (HR, 1.22, 95% CI, 0.95-1.56; high vs low intake). Moderately low intake of caffeinated coffee was associated with an increased risk of pancreatic cancer (HR, 1.33; 95% CI, 1.02-1.74), compared with low intake. However, no graded dose response was observed, and the association attenuated after restriction to histologically confirmed pancreatic cancers.
CONCLUSIONS: Based on an analysis of data from the European Prospective Investigation into Nutrition and Cancer cohort, total coffee, decaffeinated coffee, and tea consumption are not related to the risk of pancreatic cancer.
METHODS: A total of 335,060 women participating in the European Prospective Investigation into Nutrition and Cancer (EPIC) Study, completed a dietary questionnaire from 1992 to 2000, and were followed-up until 2010 for incidence of breast cancer. Hazard ratios (HR) of breast cancer by country-specific, as well as cohort-wide categories of beverage intake were estimated.
RESULTS: During an average follow-up of 11 years, 1064 premenopausal, and 9134 postmenopausal breast cancers were diagnosed. Caffeinated coffee intake was associated with lower risk of postmenopausal breast cancer: adjusted HR=0.90, 95% confidence interval (CI): 0.82 to 0.98, for high versus low consumption; Ptrend=0.029. While there was no significant effect modification by hormone receptor status (P=0.711), linear trend for lower risk of breast cancer with increasing caffeinated coffee intake was clearest for estrogen and progesterone receptor negative (ER-PR-), postmenopausal breast cancer (P=0.008). For every 100 ml increase in caffeinated coffee intake, the risk of ER-PR- breast cancer was lower by 4% (adjusted HR: 0.96, 95% CI: 0.93 to 1.00). Non-consumers of decaffeinated coffee had lower risk of postmenopausal breast cancer (adjusted HR=0.89; 95% CI: 0.80 to 0.99) compared to low consumers, without evidence of dose-response relationship (Ptrend=0.128). Exclusive decaffeinated coffee consumption was not related to postmenopausal breast cancer risk, compared to any decaffeinated-low caffeinated intake (adjusted HR=0.97; 95% CI: 0.82 to 1.14), or to no intake of any coffee (HR: 0.96; 95%: 0.82 to 1.14). Caffeinated and decaffeinated coffee were not associated with premenopausal breast cancer. Tea intake was neither associated with pre- nor post-menopausal breast cancer.
CONCLUSIONS: Higher caffeinated coffee intake may be associated with lower risk of postmenopausal breast cancer. Decaffeinated coffee intake does not seem to be associated with breast cancer.