In recent decades, global oil palm production has shown an abrupt increase, with almost 90% produced in Southeast Asia alone. To understand trends in oil palm plantation expansion and for landscape-level planning, accurate maps are needed. Although different oil palm maps have been produced using remote sensing in the past, here we use Sentinel 1 imagery to generate an oil palm plantation map for Indonesia, Malaysia and Thailand for the year 2017. In addition to location, the age of the oil palm plantation is critical for calculating yields. Here we have used a Landsat time series approach to determine the year in which the oil palm plantations are first detected, at which point they are 2 to 3 years of age. From this, the approximate age of the oil palm plantation in 2017 can be derived.
Forest biomass is an essential indicator for monitoring the Earth's ecosystems and climate. It is a critical input to greenhouse gas accounting, estimation of carbon losses and forest degradation, assessment of renewable energy potential, and for developing climate change mitigation policies such as REDD+, among others. Wall-to-wall mapping of aboveground biomass (AGB) is now possible with satellite remote sensing (RS). However, RS methods require extant, up-to-date, reliable, representative and comparable in situ data for calibration and validation. Here, we present the Forest Observation System (FOS) initiative, an international cooperation to establish and maintain a global in situ forest biomass database. AGB and canopy height estimates with their associated uncertainties are derived at a 0.25 ha scale from field measurements made in permanent research plots across the world's forests. All plot estimates are geolocated and have a size that allows for direct comparison with many RS measurements. The FOS offers the potential to improve the accuracy of RS-based biomass products while developing new synergies between the RS and ground-based ecosystem research communities.