Mycoplasma gallisepticum is a bacterium of class Mollicutes which encompasses wall-less bacteria with significantly reduced genomes. Due to their overall reduction and simplicity mycoplasmas serve as a model of minimal cell and are used for systems biology studies. Here we present raw data on translatome (ribosome-bound mRNA) analysis of Mycoplasma gallisepticum under logarithm growth and heat stress. The data supports the publication of "Ribosomal profiling of Mycoplasma gallisepticum" (G. Y. Fisunov, D. V Evsyutina, A. A. Arzamasov, I. O. Butenko, V. M. Govorun, 2015) [1].
New oligonucleotide analogues with triazole internucleotide linkages were synthesized, and their hybridization properties were studied. The analogues demonstrated DNA binding affinities similar to those of unmodified oligonucleotides. The modification was shown to protect the oligonucleotides from nuclease hydrolysis. The modified oligonucleotides were tested as PCR primers. Modifications remote from the 3'-terminus were tolerated by polymerases. Our results suggest that these new oligonucleotide analogues are among the most promising triazole DNA mimics characterized to date.