Foamed concrete (FC) is a high-quality building material with densities from 300 to 1850 kg/m3, which can have potential use in civil engineering, both as insulation from heat and sound, and for load-bearing structures. However, due to the nature of the cement material and its high porosity, FC is very weak in withstanding tensile loads; therefore, it often cracks in a plastic state, during shrinkage while drying, and also in a solid state. This paper is the first comprehensive review of the use of man-made and natural fibres to produce fibre-reinforced foamed concrete (FRFC). For this purpose, various foaming agents, fibres and other components that can serve as a basis for FRFC are reviewed and discussed in detail. Several factors have been found to affect the mechanical properties of FRFC, namely: fresh and hardened densities, particle size distribution, percentage of pozzolanic material used and volume of chemical foam agent. It was found that the rheological properties of the FRFC mix are influenced by the properties of both fibres and foam; therefore, it is necessary to apply an additional dosage of a foam agent to enhance the adhesion and cohesion between the foam agent and the cementitious filler in comparison with materials without fibres. Various types of fibres allow the reduction of by autogenous shrinkage a factor of 1.2-1.8 and drying shrinkage by a factor of 1.3-1.8. Incorporation of fibres leads to only a slight increase in the compressive strength of foamed concrete; however, it can significantly improve the flexural strength (up to 4 times), tensile strength (up to 3 times) and impact strength (up to 6 times). At the same time, the addition of fibres leads to practically no change in the heat and sound insulation characteristics of foamed concrete and this is basically depended on the type of fibres used such as Nylon and aramid fibres. Thus, FRFC having the presented set of properties has applications in various areas of construction, both in the construction of load-bearing and enclosing structures.
The incessant demand for concrete is predicted to increase due to the fast construction developments worldwide. This demand requires a huge volume of cement production that could cause an ecological issue such as increasing the rates of CO2 emissions in the atmosphere. This motivated several scholars to search for various alternatives for cement and one of such alternatives is called sulfur-based concrete. This concrete composite contributes to reduce the amount of cement required to make conventional concrete. Sulfur can be used as a partial-alternate binder to Ordinary Portland Cement (OPC) to produce sulfur-based concrete, which is a composite matrix of construction materials collected mostly from aggregates and sulfur. Sulfur modified concrete outperforms conventional concrete in terms of rapid gain of early strength, low shrinkage, low thermal conductivity, high durability resistance and excellent adhesion. On the basis of mentioned superior characteristics of sulfur-based concrete, it can be applied as a leading construction material for underground utility systems, dams and offshore structures. Therefore, this study reviews the sources, emissions from construction enterprises and compositions of sulfur; describes the production techniques and properties of sulfur; and highlights related literature to generate comprehensive insights into the potential applications of sulfur-based concrete in the construction industry today.
Ferrocement panels, while offering various benefits, do not cover instances of low and moderated velocity impact. To address this problem and to enhance the impact strength against low-velocity impact, a fibrous ferrocement panel is proposed and investigated. This study aims to assess the flexural and low-velocity impact response of simply supported ferrocement panels reinforced with expanded wire mesh (EWM) and steel fibers. The experimental program covered 12 different ferrocement panel prototypes and was tested against a three-point flexural load and falling mass impact test. The ferrocement panel system comprises mortar reinforced with 1% and 2% dosage of steel fibers and an EWM arranged in 1, 2, and 3 layers. For mortar preparation, a water-cement (w/c) ratio of 0.4 was maintained and all panels were cured in water for 28 days. The primary endpoints of the investigation are first crack and ultimate load capacity, deflection corresponding to first crack and ultimate load, ductility index, flexural strength, crack width at ultimate load, a number of impacts needed to induce crack commencement and failure, ductility ratio, and failure mode. The finding revealed that the three-layers of EWM inclusion and steel fibers resulted in an additional impact resistance improvement at cracking and failure stages of ferrocement panels. With superior ultimate load capacity, flexural strength, crack resistance, impact resistance, and ductile response, as witnessed in the experiment program, ferrocement panel can be a positive choice for many construction applications subjected to repeated low-velocity impacts.
Conventional reinforced concrete (RC) structures are commonly associated with the corrosion of steel reinforcement. The application of carbon fiber reinforced polymer (CFRP) bars as flexural reinforcement has become a new promising option. This paper presents a state-of-the art flexural strength on concrete beams reinforced with CFRP bars. Concrete compressive and CFRP bar tensile strain, reinforcement ratio, types of surface treatment on CFRP bar and concrete compressive strength were identified as aspects of behavior. Significant findings in the literature had manifested all aspects of behavior that were affecting the flexural strength, deflections and crack characteristics of CFRP RC beams. In addition, the experimental result on 98 specimens of CFRP RC beams from the literature show that ACI 440.1R-15 and CSA S806-12 standards underestimate the ultimate flexural moment capacity of CFRP RC beams. On the other hand, Kara and Ashour predictions are more accurate with the experimental values. Moreover, hotspot research topics were also highlighted for further considerations in future studies.
The inhibiting effect of Gum Arabic-nanoparticles (GA-NPs) to control the corrosion of reinforced concrete that exposed to carbon dioxide environment for 180 days has been investigated. The steel reinforcement of concrete in presence and absence of GA-NPs were examined using various standard techniques. The physical/surface changes of steel reinforcement was screened using weight loss measurement, electrochemical impedance spectroscopy (EIS), atomic force microscopy and scanning electron microscopy (SEM). In addition, the carbonation resistance of concrete as well screened using visual inspection (carbonation depth), concrete alkalinity (pH), thermogravimetric analysis (TGA), SEM, energy-dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD). The GA-NPs inhibitor size was also confirmed by transmission electron microscopy (TEM). The results obtained revealed that incorporation of 3% GA-NPs inhibitor into concrete inhibited the corrosion process via adsorption of inhibitor molecules over the steel reinforcement surface resulting of a protective layer formation. Thus, the inhibition efficiency was found to increase up-to 94.5% with decreasing corrosion rate up-to 0.57 × 10-3 mm/year. Besides, the results also make evident the presence of GA-NPs inhibitor, ascribed to the consumption of calcium hydroxide, and reduced the Ca/Si to 3.72% and 0.69% respectively. Hence, C-S-H gel was developed and pH was increased by 9.27% and 12.5, respectively. It can be concluded that green GA-NPs have significant corrosion inhibition potential and improve the carbonation resistance of the concrete matrix to acquire durable reinforced concrete structures.
Rapid global infrastructural developments and advanced material science, amongst other factors, have escalated the demand for concrete. Cement, which is an integral part of concrete, binds the various individual solid materials to form a cohesive mass. Its production to a large extent emits many tons of greenhouse gases, with nearly 10% of global carbon (IV) oxide (CO2) emanating from cement production. This, coupled with an increase in the advocacy for environmental sustainability, has led to the development of various innovative solutions and supplementary cementitious materials. These aims to substantially reduce the overall volume of cement required in concrete and to meet the consistently increasing demand for concrete, which is projected to increase as a result of rapid construction and infrastructural development trends. Palm oil fuel ash (POFA), an industrial byproduct that is a result of the incineration of palm oil wastes due to electrical generation in power plants has unique properties, as it is a very reactive materials with robust pozzolanic tendencies, and which exhibits adequate micro-filling capabilities. In this study, a review on the material sources, affecting factors, and durability characteristics of POFA are carefully appraised. Moreover, in this study, a review of correlated literature with a broad spectrum of insights into the likely utilization of POFA-based eco-friendly concrete composites as a green material for the present construction of modern buildings is presented.
Concrete technology is adopted worldwide in construction due to its effectiveness, performance, and price benefits. Subsequently, it needs to be an eco-friendly, sustainable, and energy-efficient material. This is achieved by replacing or adding energy-efficient concrete materials from industries, such as ground granulated blast furnace slag, steel slag, fly ash, bottom ash, rice husk ash, etc. Likewise, copper slag is a waste material produced as molten slag from the copper industry, which can be used in concrete production. Copper slag can perform roles similar to pozzolans in the hydration process. This paper extends the comparative study of copper slag concrete with polypropylene fiber (PPF) subjected to destructive and non-destructive testing. Under destructive testing, compressive strength of concrete cubes, compressive strength of mortar cubes, splitting tensile tests on cylindrical specimens, and flexural tests on plain cement concrete were conducted and analysed. Ultrasonic pulse velocity and rebound hammer tests were performed on the samples as per IS13311-Part 1-1992 for non-destructive testing. The 100% replacement of copper slag exhibited a very high workability of 105 mm, while the addition of 0.8% PPF decreased the flowability of the concrete. Hence, the workability of concrete decreases as the fiber content increases. The density of the concrete was found to be increased in the range of 5% to 10%. Furthermore, it was found that, for all volume fractions of fiber, there was no reduction in compressive strength of up to 80% of copper slag concrete compared to control concrete. The 40% copper slag concrete was the best mix proportion for increasing compressive strength. However, for cement mortar applications, 80% copper slag is recommended. The findings of non-destructive testing show that, except for 100% copper slag, all mixes were of good quality compared to other mixes. Linear relationships were developed to predict compressive strength from UPV and rebound hammer test values. This relationship shows better prediction among dependent and independent values. It is concluded that copper slag has a pozzolanic composition, and is compatible with PPF, resulting in good mechanical characteristics.
The construction industry relies heavily on concrete as a building material. The coarse aggregate makes up a substantial portion of the volume of concrete. However, the continued exploitation of granite rock for coarse aggregate results in an increase in the future generations' demand for natural resources. In this investigation, coconut shell was used in the place of conventional aggregate to produce coconut shell lightweight concrete. Class F fly ash was used as a partial substitute for cement to reduce the high cement content of lightweight concrete. The impact of steel fiber addition on the compressive strength and flexural features of sustainable concrete was investigated. A 10% weight replacement of class F fly ash was used in the place of cement. Steel fiber was added at 0.25, 0.5, 0.75, and 1.0% of the concrete volume. The results revealed that the addition of steel fibers enhanced the compressive strength by up to 39%. The addition of steel fiber to reinforced coconut shell concrete beams increased the ultimate moment capacity by 5-14%. Flexural toughness was increased by up to 45%. The span/deflection ratio of all fiber-reinforced coconut shell concrete beams met the IS456 and BS 8110 requirements. Branson's and the finite element models developed in this study agreed well with the experimental results. As a result, coconut shell concrete with steel fiber could be considered as a viable and environmentally-friendly construction material.
Nuclear energy offers a wide range of applications, which include power generation, X-ray imaging, and non-destructive tests, in many economic sectors. However, such applications come with the risk of harmful radiation, thereby requiring shielding to prevent harmful effects on the surrounding environment and users. Concrete has long been used as part of structures in nuclear power plants, X-ray imaging rooms, and radioactive storage. The direction of recent research is headed toward concrete's ability in attenuating harmful energy radiated from nuclear sources through various alterations to its composition. Radiation shielding concrete (RSC) is a composite-based concrete that was developed in the last few years with heavy natural aggregates such as magnetite or barites. RSC is deemed a superior alternative to many types of traditional normal concrete in terms of shielding against the harmful radiation, and being economical and moldable. Given the merits of RSCs, this article presents a comprehensive review on the subject, considering the classifications, alternative materials, design additives, and type of heavy aggregates used. This literature review also provides critical reviews on RSC performance in terms of radiation shielding characteristics, mechanical strength, and durability. In addition, this work extensively reviews the trends of development research toward a broad understanding of the application possibilities of RSC as an advanced concrete product for producing a robust and green concrete composite for the construction of radiation shielding facilities as a better solution for protection from sources of radiation. Furthermore, this critical review provides a view of the progress made on RSCs and proposes avenues for future research on this hotspot research topic.