METHODS: Nine subjects were injected intravenously with the mean (18)F-FDG dose of 292.42 MBq prior to whole body PET/CT scanning. Kidneys and urinary bladder doses were estimated by using two approaches which are the total injected activity of (18)F-FDG and organs activity concentration of (18)F-FDG based on drawn ROI with the application of recommended dose coefficients for (18)F-FDG described in the ICRP 80 and ICRP 106.
RESULTS: The mean percentage difference between calculated dose and measured dose ranged from 98.95% to 99.29% for the kidneys based on ICRP 80 and 98.96% to 99.32% based on ICRP 106. Whilst, the mean percentage difference between calculated dose and measured dose was 97.08% and 97.27% for urinary bladder based on ICRP 80 while 96.99% and 97.28% based on ICRP 106. Whereas, the range of mean percentage difference between calculated and measured organ doses derived from ICRP 106 and ICRP 80 for kidney doses were from 17.00% to 40.00% and for urinary bladder dose was 18.46% to 18.75%.
CONCLUSIONS: There is a significant difference between calculated dose and measured dose. The use of organ activity estimation based on drawn ROI and the latest version of ICRP 106 dose coefficient should be explored deeper to obtain accurate radiation dose to patients.
METHOD: A case-control study was conducted in the Universiti Putra Malaysia among eight military personnel, four of whom had chronic intermittent exposure to high altitude training. They were divided into two groups, chronic intermittent exposure group (CE) (n=4) and a control group (n=4). They underwent a task-based functional magnetic resonance imaging (fMRI) that utilised spatial working memory task to objectively evaluate the neural activation in response to the Tower of London paradigm. Each correct answer was given a score of one and the maximum achievable score was 100%.
RESULTS: A consecutive dichotomised group of CE (4/8) and control (4/8) of age-matched military aviation personnel with a mean age of 37.23±5.52 years; showed significant activation in the right middle frontal gyrus (MFG). This in turn was positively correlated with response accuracy. A significant difference in the response accuracy was noted among both the groups at p<0.05.
CONCLUSION: At the minimum results of power analysis of this preliminary fMRI study, our group of aviation personnel who had chronic intermittent exposure to hypobaric hypoxic environment, did not have any significant decrease in cognitive function namely attention, decision-making and problem solving compared to controls during a working memory task.