Displaying all 5 publications

Abstract:
Sort:
  1. Fasahat, P., Abdullah, A., Muhammad, K., Wickneswari, R.
    MyJurnal
    Tocochromanols (tocopherols and tocotrienols) unitedly known as vitamin E, are the necessary antioxidant components of both human and animal diets. There is a considerable interest in plants with increased or customized vitamin E content, due to their potential health benefits. To quantify the tocochromanol content and determine the expression of a key tocotrienol biosynthesis gene among a set of contrasting red pericarp and light brown rice genotypes of advanced breeding lines together with their parents; expression pattern of homogentisate geranylgeranyl transferase (HGGT), the key gene was studied by semi-quantitative RT-PCR in milky and matured grain stages. Vitamin E analysis was carried out by high performance liquid chromatography (HPLC). The chloroform-methanolic extracts prepared from red pericarp and light brown rice advanced breeding lines showed significant differences for vitamin E content. Averaged across all samples, the content of γ-tocotrienol > α-tocopherol > α-tocotrienol > γ-tocopherol > δ-tocotrienol, and total E vitamin content ranged from 10.30 to 31.65 µg/g. Genotype G37 (red pericarp) was found to have higher expression than G7 (light brown) and G33 (red pericarp) at both grain development stages but lower than both parents whereas their transcript levels were comparatively lower in mature grain, which indicates their possible regulation by plant growth stage. HPLC results of γ-tocotrienol content supported gene expression results with the exception of the recurrent parent MR219.
  2. Fasahat, P., Wickneswari, R., Abdullah, A., Musa, K.H., Muhammad, K.
    MyJurnal
    Red coloured rice, has been shown to contain high levels of bioactive properties. The aim of this study was to quantify the major antioxidant compounds in the whole grain of two new red rice transgressive variants together with their parents which was determined by the oxygen radical absorbance capacity (ORAC) method, measured in methanol extract. A Thailand commercial red rice was used as a control. Although, the ORAC values for some red rice samples were similar, they were higher than light brown rice control, MR219. The antioxidant capacity was also evaluated by ferric-reducing antioxidant power assay. FRAP result was well correlated with ORAC (r = 0.94).
  3. Fasahat P, Muhammad K, Abdullah A, Wickneswari R
    Genet. Mol. Res., 2012;11(3):3534-46.
    PMID: 23079848 DOI: 10.4238/2012.September.26.10
    A limited backcross procedure was utilized to introgress genes associated with grain quality traits from Oryza rufipogon (Accession No. IRGC 105491), a wild rice from Malaysia, to the cultivated rice O. sativa cv. MR219, a popular high yielding Malaysian rice cultivar. A set of 10 BC(2)F(7) progenies were selected based on the field performance and phenotypic appearance in BC(2)F(5) and BC(2)F(6) generations, which initially started with 266 progenies in the BC(2)F(2) generation. These 10 advanced breeding lines are similar to each other but differ in several important grain quality traits, which can be traced to O. rufipogon introgressions. Phenotyping and genotyping of BC(2)F(7) variants were considered for QTL analysis. The introgressed lines did not show any significant changes compared to the recurrent parent MR219 for the traits grain density and milled rice percentage. All 10 progenies showed significantly higher head rice percentages (70-88%) than the recurrent parent MR219. Variants G13 and G15 had higher amylose contents than MR219. All variants were analyzed using polymorphic SSR markers. Of the 34 SSR markers, only 18 showed introgression from O. rufipogon for chromosomes 1, 2, 3, 5, 6, 8, 10, and 11. Graphical genotypes were prepared for each variant, and association between the introgression regions and the traits that increased grain quality was visualized. Based on marker trait association, some of the QTLs are stable across environments and genetic backgrounds and could be used universally.
  4. Fasahat P, Rahman S, Ratnam W
    J Genet, 2014 Apr;93(1):279-92.
    PMID: 24840849
    Starch accumulates in plants as granules in chloroplasts of source organs such as leaves (transitory starch) or in amyloplasts of sink organs such as seeds, tubers and roots (storage starch). Starch is composed of two types of glucose polymers: the essentially linear polymer amylose and highly branched amylopectin. The amylose content of wheat and rice seeds is an important quality trait, affecting the nutritional and sensory quality of two of the world's most important crops. In this review, we focus on the relationship between amylose biosynthesis and the structure, physical behaviour and functionality of wheat and rice grains. We briefly describe the structure and composition of starch and then in more detail describe what is known about the mechanism of amylose synthesis and how the amount of amylose in starch might be controlled. This more specifically includes analysis of GBSS alleles, the relationship between waxy allelic forms and amylose, and related quantitative trait loci. Finally, different methods for increasing or lowering amylose content are evaluated.
  5. Karupaiah T, Aik CK, Heen TC, Subramaniam S, Bhuiyan AR, Fasahat P, et al.
    J Sci Food Agric, 2011 Aug 30;91(11):1951-6.
    PMID: 21480266 DOI: 10.1002/jsfa.4395
    BACKGROUND: We evaluated glycaemic response of a brown rice variant (BR) developed by cross-breeding. Subjects (n = 9) consumed 50 g carbohydrate equivalents of BR, white rice (WR) and the polished brown rice (PR) in comparison to 50 g glucose reference (GLU) in a cross-over design. Plasma glucose and insulin at 0, 15, 45, 60, 90, 120 and 180 min were measured and incremental area under the curve (IAUC) and indices for glucose (GI) and insulin (II) calculated.
    RESULTS: BR compared to PR or WR produced the lowest postprandial glycaemia (GI: 51 vs 79 vs 86) and insulinaemia (II: 39 vs 63 vs 68) irrespective of amylose content (19 vs 23 vs 26.5%). Only BR was significantly different from GLU for both plasma glucose (P = 0.012) and insulin (P = 0.013) as well as IAUC(glu) (P = 0.045) and IAUC(ins) (P = 0.031). Glycaemic and insulinaemic responses correlated positively (r = 0.550, P < 0.001). Linear trends for IAUC(glu) and IAUC(ins) indicated a greater secretion of insulin tied in with a greater glycaemic response for WR (r(2) = 0.848), moderate for PR (r(2) = 0.302) and weakest for BR (r(2) = 0.122).
    CONCLUSION: The brown rice variant had the lowest GI and II values but these advantages were lost with polishing.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links