Displaying all 4 publications

Abstract:
Sort:
  1. Osman NA, Ujang FA, Roslan AM, Ibrahim MF, Hassan MA
    Sci Rep, 2020 04 20;10(1):6613.
    PMID: 32313095 DOI: 10.1038/s41598-020-62815-0
    Phytoremediation is one of the environmental-friendly and cost-effective systems for the treatment of wastewater, including industrial wastewater such as palm oil mill effluent final discharge (POME FD). However, the effects of the wastewater on the phytoremediator plants, in term of growth performance, lignocellulosic composition, and the presence of nutrients and heavy metals in the plants are not yet well studied. In the present work, we demonstrated that POME FD increased the growth of P. purpureum. The height increment of P. purpureum supplied with POME FD (treatment) was 61.72% as compared to those supplied with rain water (control) which was 14.42%. For lignocellulosic composition, the cellulose percentages were 38.77 ± 0.29% (treatment) and 34.16 ± 1.01% (control), and the difference was significant. These results indicated that POME FD could be a source of plant nutrients, which P. purpureum can absorb for growth. It was also found that the heavy metals (Al, As, Cd, Co, Cr, Ni and Pb) inside the plant were below the standard limit of the World Health Organization (WHO). Since POME FD was shown to have no adverse effects on P. purpureum, further research regarding the potential application of P. purpureum following phytoremediation of POME FD such as biofuel production is warranted to evaluate its potential use to fit into the waste-to-wealth agenda.
  2. Mohamad Fahrul Radzi Hanifah, Juhana Jaafar, Madzlan Aziz, Mohd Hafiz Dzarfan Othman, Mukhlis A. Rahman, Ahmad Fauzi Ismail, et al.
    Sains Malaysiana, 2017;46:629-635.
    Reduced graphene oxide nanosheet (RGO)/Pt nanocomposite have been successfully prepared through a facile chemical reduction method. The reduction of Pt precursor was carried out using sodium borohydride as the efficient chemical reductant. The morphology of RGO/Pt nanocomposite was investigated using high resolution transmission electron microscopy (HRTEM) and field emission scanning electron microscopy (FESEM). HRTEM analysis showed that platinum nanoparticles were homogenously distributed onto the surface of RGO. The electrochemical study proved that Pt nanoparticles were successfully incorporated onto RGO. Therefore, it can be concluded that the proposed method could provide well-dispersed of Pt nanoparticles onto RGO to form RGO/ Pt nanocomposite.
  3. Ujang FA, Roslan AM, Osman NA, Norman A, Idris J, Farid MAA, et al.
    Sci Rep, 2021 Sep 14;11(1):18257.
    PMID: 34521938 DOI: 10.1038/s41598-021-97789-0
    The reason for such enormous efforts in palm oil mill effluent research would be what has been singled out as one of the major sources of pollution in Malaysia, and perhaps the most costly and complex waste to manage. Palm oil mill final discharge, which is the treated effluent, will usually be discharged to nearby land or river since it has been the least costly way to dispose of. Irrefutably, the quality level of the treated effluent does not always satisfy the surface water quality in conformity to physicochemical characteristics. To work on improving the treated effluent quality, a vertical surface-flow constructed wetland system was designed with Pennisetum purpureum (Napier grass) planted on the wetland floor. The system effectively reduced the level of chemical oxygen demand by 62.2 ± 14.3%, total suspended solid by 88.1 ± 13.3%, ammonia by 62.3 ± 24.8%, colour by 66.6 ± 13.19%, and tannin and lignin by 57.5 ± 22.3%. Heat map depicted bacterial diversity and relative abundance in life stages from the wetland soil, whereby bacterial community associated with the pollutant removal was found to be from the families Anaerolineaceae and Nitrosomonadaceae, and phyla Cyanobacteria and Acidobacteria.
  4. Lim KY, Yasim-Anuar TAT, Sharip NS, Ujang FA, Husin H, Ariffin H, et al.
    Polymers (Basel), 2023 Mar 01;15(5).
    PMID: 36904501 DOI: 10.3390/polym15051258
    Lignin is a natural biopolymer with a complex three-dimensional network and it is rich in phenol, making it a good candidate for the production of bio-based polyphenol material. This study attempts to characterize the properties of green phenol-formaldehyde (PF) resins produced through phenol substitution by the phenolated lignin (PL) and bio-oil (BO), extracted from oil palm empty fruit bunch black liquor. Mixtures of PF with varied substitution rates of PL and BO were prepared by heating a mixture of phenol-phenol substitute with 30 wt.% NaOH and 80% formaldehyde solution at 94 °C for 15 min. After that, the temperature was reduced to 80 °C before the remaining 20% formaldehyde solution was added. The reaction was carried out by heating the mixture to 94 °C once more, holding it for 25 min, and then rapidly lowering the temperature to 60 °C, to produce the PL-PF or BO-PF resins. The modified resins were then tested for pH, viscosity, solid content, FTIR, and TGA. Results revealed that the substitution of 5% PL into PF resins is enough to improve its physical properties. The PL-PF resin production process was also deemed environmentally beneficial, as it met 7 of the 8 Green Chemistry Principle evaluation criteria.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links