Displaying all 5 publications

Abstract:
Sort:
  1. Moeinzadeh R, Jadval Ghadam AG, Lau WJ, Emadzadeh D
    Carbohydr Polym, 2019 Dec 01;225:115212.
    PMID: 31521264 DOI: 10.1016/j.carbpol.2019.115212
    In this work, nanocomposite ultrafiltration (UF) membranes were synthesized through addition of different quantities of amino-functionalized nanocrystalline cellulose (NCs) in order to improve membrane anti-fouling resistance against oil depositions. The characterization results demonstrated that the overall porosity and hydrophilicity of the membranes were improved significantly upon addition of NCs despite a decrease in the pore size of nanocomposite membranes. The UF performance results showed that the nanocomposite membrane incorporated with 1 wt% NCs achieved an optimal water flux improvement, i.e., approximately 43% higher than the pristine membrane. Such nanocomposite membrane also exhibited promising oil rejection (>98.2%) and excellent water flux recovery rate of ˜98% and ˜85% after one and four cycles of treating 250-ppm oil-in-water emulsion solution, respectively. The desirable anti-fouling properties of nanocomposite membrane can be attributed to the existence of hydrophilic functional groups (-OH) on the surface of membrane stemming from addition of NCs that renders the membrane less vulnerable to fouling during oil-in-water emulsion treatment.
  2. Lau WJ, Gray S, Matsuura T, Emadzadeh D, Chen JP, Ismail AF
    Water Res, 2015 Sep 1;80:306-24.
    PMID: 26011136 DOI: 10.1016/j.watres.2015.04.037
    This review focuses on the development of polyamide (PA) thin film nanocomposite (TFN) membranes for various aqueous media-based separation processes such as nanofiltration, reverse osmosis and forward osmosis since the concept of TFN was introduced in year 2007. Although the total number of published TFN articles falls far short of the articles of the well-known thin film composite (TFC) membranes, its growth rate is significant, particularly since 2012. Generally, by incorporating an appropriate amount of nanofiller into a thin selective PA layer of a composite membrane, one could produce TFN membranes with enhanced separation characteristics as compared to the conventional TFC membrane. For certain cases, the resulting TFN membranes demonstrate not only excellent antifouling resistance and/or greater antibacterial effect, but also possibly overcome the trade-off effect between water permeability and solute selectivity. Furthermore, this review attempts to give the readers insights into the difficulties of incorporating inorganic nanomaterials into the organic PA layer whose thickness usually falls in a range of several-hundred nanometers. It is also intended to show new possible approaches to overcome these challenges in TFN membrane fabrication.
  3. Bidsorkhi HC, Riazi H, Emadzadeh D, Ghanbari M, Matsuura T, Lau WJ, et al.
    Nanotechnology, 2016 Oct 14;27(41):415706.
    PMID: 27607307 DOI: 10.1088/0957-4484/27/41/415706
    In this research, novel ultrafiltration nanocomposite membranes were prepared by incorporating self-synthesized nanoporous titanium dioxide (NTiO2) nanoparticles into polysulfone. The surface of the nanoparticle was treated with a silane-based modifier to improve its distribution in the host polymer. Atomic-force microscopy, scanning electron microscopy, Fourier transform infrared spectroscopy, Brunauer-Emmett-Teller, transmission electron microscopy, energy-dispersive x-ray spectroscopy, porosity and contact angle tests were conducted to characterize the properties of the particles as well as the fabricated nanocomposite membranes. The effects of the nanoparticle incorporation were evaluated by conducting ultrafiltration experiments. It was reported that the membrane pure water flux was increased with increasing NTiO2 loading owing to the high porosity of the nanoparticles embedded and/or formation of enlarged pores upon addition of them. The antifouling capacity of the membranes was also tested by ultrafiltration of bovine serum albumin fouling solution. It was found that both water flux and antifouling capacity tended to reach desired level if the NTiO2 added was at optimized loading.
  4. Emadzadeh D, Ghanbari M, Lau WJ, Rahbari-Sisakht M, Rana D, Matsuura T, et al.
    Mater Sci Eng C Mater Biol Appl, 2017 Jun 01;75:463-470.
    PMID: 28415486 DOI: 10.1016/j.msec.2017.02.079
    In this study, nanoporous titanate (NT) nanoparticle synthesized by the solvothermal method was used to modify polyamide layer of thin film composite membranes with the aim of improving membrane resistances against organic and inorganic fouling. Thin film nanocomposite membranes (NMs) were synthesized by adding mNTs (modified nanoparticles) into polyamide selective layer followed by characterization using different analytical instruments. The results of XPS and XRD confirmed the presence of mNTs in the polyamide layer of NMs, while FESEM, AFM, zeta potential and contact angle measurement further supported the changes in physical and chemical properties of the membrane surface upon mNTs incorporation. Results of fouling showed that NM1 (the membrane incorporated with 0.01w/v% mNTs) always demonstrated lower degree of flux decline compared to the control membrane when membranes were tested with organic, inorganic and multicomponent synthesized water, brackish water or seawater. Besides showing greater antifouling resistance, the NM also displayed significantly higher water flux compared to the control M membrane. The findings of this work confirmed the positive impact of mNTs in improving the properties of NM with respect to fouling mitigation and flux improvement.
  5. Baneshi MM, Ghaedi AM, Vafaei A, Emadzadeh D, Lau WJ, Marioryad H, et al.
    Environ Res, 2020 04;183:109278.
    PMID: 32311912 DOI: 10.1016/j.envres.2020.109278
    The water sources contaminated by toxic dyes would pose a serious problem for public health. In view of this, the development of a simple yet effective method for removing dyes from industrial effluent has attracted interest from researchers. In the present work, flat sheet mixed matrix membranes (MMMs) with different physiochemical properties were fabricated by blending P84 polyimide with different concentrations of cadmium-based metal organic frameworks (MOF-2(Cd)). The resultant membranes were then used for simultaneous removal of eosin y (EY), sunset yellow (SY) and methylene blue (MB) under various process conditions. The findings indicated that the membranes could achieve high water permeability (117.8-171.4 L/m2.h.bar) and promising rejection for simultaneous dyes removal, recording value of 99.9%, 81.2% and 68.4% for MB, EY and SY, respectively. When 0.2 wt% MOF-2(Cd) was incorporated into the membrane matrix, the membrane separation efficiency was improved by 110.2% and 213.3% for EY and SY removal, respectively when compared with the pristine membrane. In addition, the optimization and modeling of membrane permeate flux and dye rejection was explored using response surface methodology. The actual and model results are in good agreement with R2 of at least 0.9983 for dye rejection and permeate flux. The high flux of the developed MMMs coupled with effective separation of dyes suggests a promising prospect of using P84 polyimide MMMs incorporated with MOF-2(Cd) for water purification.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links