A combination of persulfate and hydrogen peroxide (S2O8(2-)/H2O2) was used to oxidizelandfill leachate. The reaction was performed under varying S2O8(2-)/H2O2 ratio (g/g), S2O8(2-)/H2O2 dosages (g/g), pH, and reaction time (minutes), so as to determine the optimum operational conditions. Results indicated that under optimum operational conditions (i.e. 120 min of oxidation using a S2O8(2-)/H2O2 ratio of 1 g/1.47 g at a persulfate and hydrogen peroxide dosage of 5.88 g/50 ml and8.63 g/50 ml respectively, at pH 11) removal of 81% COD and 83% NH3-N was achieved. In addition, the biodegradability (BOD5/COD ratio) of the leachate was improved from 0.09 to 0.17. The results obtained from the combined use of (S2O8(2-)/H2O2) were compared with those obtained with sodium persulfate only, hydrogen peroxide only and sodium persulfate followed by hydrogen peroxide. The combined method (S2O8(2-)/H2O2) achieved higher removal efficiencies for COD and NH3-N compared with the other methods using a single oxidizing agent. Additionally, the study has proved that the combination of S2O8(2-)/H2O2 is more efficient than the sequential use of sodium persulfate followed by hydrogen peroxide in advanced oxidation processes aiming at treatingstabilizedlandfill leachate.
The objective of this study was to investigate the performance of employing H2O2 reagent in persulfate activation to treat stabilized landfill leachate. A central composite design (CCD) with response surface methodology (RSM) was applied to evaluate the relationships between operating variables, such as persulfate and H2O2 dosages, pH, and reaction time, to identify the optimum operating conditions. Quadratic models for the following two responses proved to be significant with very low probabilities (<0.0001): chemical oxygen demand (COD) and NH3-N removal. The obtained optimum conditions included a reaction time of 116 min, 4.97 g S2O8(2-), 7.29 g H2O2 dosage and pH 11. The experimental results were corresponding well with predicted models (COD and NH3-N removal rates of 81% and 83%, respectively). The results obtained in the stabilized leachate treatment were compared with those from other treatment processes, such as persulfate only and H2O2 only, to evaluate its effectiveness. The combined method (i.e., /S2O8(2-)/H2O2) achieved higher removal efficiencies for COD and NH3-N compared with other studied applications.
The current study investigated the effects of S2O8(2-) and S2O8(2-)/H2O2 oxidation processes on the biodegradable characteristics of an anaerobic stabilized leachate. Total COD removal efficiency was found to be 46% after S2O8(2-) oxidation (using 4.2 g S2O8(2-)/1g COD0, at pH 7, for 60 min reaction time and at 350 rpm shaking speed), and improved to 81% following S2O8(2-)/H2O2 oxidation process (using 5.88 g S2O8(2-) dosage, 8.63 g H2O2 dosage, at pH 11 and for 120 min reaction time at 350 rpm). Biodegradability in terms of BOD5/COD ratio of the leachate enhanced from 0.09 to 0.1 and to 0.17 following S2O8(2-) and S2O8(2-)/H2O2 oxidation processes, respectively. The fractions of COD were determined before and after each oxidation processes (S2O8(2-) and S2O8(2-)/H2O2). The fraction of biodegradable COD(bi) increased from 36% in raw leachate to 57% and 68% after applying S2O8(2-) and S2O8(2-)/H2O2 oxidation, respectively. As for soluble COD(s), its removal efficiency was 39% and 78% following S2O8(2-) and S2O8(2-)/H2O2 oxidation, respectively. The maximum removal for particulate COD was 94% and was obtained after 120 min of S2O8(2-)/H2O2 oxidation. As a conclusion, S2O8(2-)/H2O2 oxidation could be an efficient method for improving the biodegradability of anaerobic stabilized leachate.