This study reports the first full length gene of interferon related developmental regulator-1 (designated as MrIRDR-1), identified from the transcriptome of Macrobrachium rosenbergii. The complete gene sequence of the MrIRDR-1 is 2459 base pair long with an open reading frame of 1308 base pairs and encoding a predicted protein of 436 amino acids with a calculated molecular mass of 48 kDa. The MrIRDR-1 protein contains a long interferon related developmental regulator super family domain between 30 and 330. The mRNA expressions of MrIRDR-1 in healthy and the infectious hypodermal and hematopoietic necrosis virus (IHHNV) infected M. rosenbergii were examined using qRT-PCR. The MrIRDR-1 is highly expressed in hepatopancreas along with all other tissues (walking leg, gills, muscle, haemocyte, pleopods, brain, stomach, intestine and eye stalk). After IHHNV infection, the expression is highly upregulated in hepatopancreas. This result indicates an important role of MrIRDR-1 in prawn defense system.
In this study, we have reported a full length of peroxiredoxin (designated MrPrdx) gene, identified from the transcriptome of freshwater prawn Macrobrachium rosenbergii. The complete gene sequence of the MrPrdx is 940 base pairs in length, and encodes 186 amino acids. MrPrdx contains a long thioredoxin domain in the amino acid sequence between 34 and 186. The gene expressions of MrPrdx in healthy and the infectious hypodermal and hematopoietic necrosis virus (IHHNV) challenged M. rosenbergii were examined using quantitative real time polymerase chain reaction. MrPrdx is highly expressed in all the other tissues of M. rosenbergii considered for analysis and the highest in gills. The expression is strongly up-regulated in gills after IHHNV infection. To understand MrPrdx functional properties, the recombinant MrPrdx protein was expressed in Escherichia coli BL21 (DE3) and purified. A peroxidise activity assay was conducted using recombinant MrPrdx protein at different concentrations. This peroxidises activity showed that the recombinant MrPrdx is a thiol-dependant protein. Additionally, this result showed that recombinant MrPrdx protein, as a secretory protein can remove H₂O₂ and protect DNA damage. This finding leads a possible way to propose the recombinant MrPrdx protein as an effective medicine for reactive oxygen species (ROS) related diseases.
Apoptosis is genetically programmed cellular killing processes that execute unnecessary or infected cells. It plays an important role in embryogenesis, homeostasis, insect metamorphosis and immunity. Apoptosis inhibitor (MrIAP) was sequenced from the freshwater giant prawn Macrobrachium rosenbergii using Illumina Solexa Genome Analyzer Technique. MrIAP consisted of 1753 base pair nucleotides encoded 535 polypeptide with an estimated molecular mass of 60 kDa. MrIAP amino acid sequence contains IAP superfamily domain between 5 and 490. The deduced amino acid sequences of the MrIAP were aligned with the other IAP family members. The highest sequence similarity was observed in IAP-5 from ant Camponotus floridanus (67%) followed by IAP from body louse Pediculus humanus corporis (66%) and the lowest (62%) in IAP-5 isoform-5 from common chimpanzee Pan troglodytes and IAP-5 from Aedes aegypti. The IAP phylogenetic tree showed that MrIAP closely related to other arthropod blacklegged tick Ixodes scapularis, formed a sister group with IAP from a hemichordate acorn worm Saccoglossus kowalevskii and finally clustered together with IAPs from fish groups. The quantitative real time PCR analysis revealed that significantly (P < 0.05) highest expression was noticed in hepatopancreas and significantly (P < 0.05) lowest expression in pleopods. Based on the results of gene expression analysis, MrIAP mRNA transcription in M. rosenbergii challenged to infectious hypodermal and hematopoietic necrosis virus (IHHNV) was highly induced in hepatopancreas. The collective results of this study indicate that the MrIAP is an essential immune gene and influences the immune response against IHHNV infection in M. rosenbergii.
The prophenoloxidase activating system is an important innate immune response against microbial infections in invertebrates. The major enzyme, phenoloxidase, is synthesized as an inactive precursor and its activation to an active enzyme is mediated by a cascade of clip domain serine proteinases. In this study, a cDNA encoding a prophenoloxidase activating enzyme-III from the giant freshwater prawn Macrobrachium rosenbergii, designated as MrProAE-III, was identified and characterized. The full-length cDNA contains an open reading frame of 1110 base pair (bp) encoding a predicted protein of 370 amino acids including an 22 amino acid signal peptide. The MrProAE-III protein exhibits a characteristic sequence structure of a long serine proteases-trypsin domain and an N- and C-terminal serine proteases-trypsin family histidine active sites, respectively, which together are the characteristics of the clip-serin proteases. Sequence analysis showed that MrProAE-III exhibited the highest amino acid sequence similarity (63%) to a ProAE-III from Atlantic blue crab, Callinectes sapidus. MrProAE-III mRNA and enzyme activity of MrProAE-III were detectable in all examined tissues, including hepatopancreas, hemocytes, pleopods, walking legs, eye stalk, gill, stomach, intestine, brain and muscle with the highest level of both in hepatopancreas. This is regulated after systemic infectious hypodermal and hematopoietic necrosis virus infection supporting that it is an immune-responsive gene. These results indicate that MrProAE-III functions in the proPO system and is an important component in the prawn immune system.
Arginine kinase-1 (MrAK-1) was sequenced from the freshwater prawn Macrobrachium rosenbergii using Illumina Solexa Genome Analyzer Technique. MrAK-1 consisted of 1068 bp nucleotide encoded 355 polypeptide with an estimated molecular mass of 40 kDa. MrAK-1 sequence contains a potential ATP:guanido phosphotransferases active domain site. The deduced amino acid sequence of MrAK-1 was compared with other 7 homologous arginine kinase (AK) and showed the highest identity (96%) with AK-1 from cherry shrimp Neocaridina denticulate. The qRT-PCR analysis revealed a broad expression of MrAK-1 with the highest expression in the muscle and the lowest in the eyestalk. The expression of MrAK-1 after challenge with the infectious hypodermal and hematopoietic necrosis virus (IHHNV) was tested in muscle. In addition, MrAK-1 was expressed in Escherichia coli by prokaryotic expression plasmid pMAL-c2x. The optimum temperature (30 °C) and pH (8.5) was determined for the enzyme activity assay. MrAK-1 showed significant (P < 0.05) activity towards 10-50 mM ATP concentration. The enzyme activity was inhibited by α-ketoglutarate, glucose and ATP at the concentration of 10, 50 and 100 mM respectively. Conclusively, the findings of this study indicated that MrAK-1 might play an important role in the coupling of energy production and utilization and the immune response in shrimps.
In this study, we have reported a full length of small heat shock protein 37 (designated MrHSP37) gene, identified from the transcriptome database of freshwater prawn Macrobrachium rosenbergii. The complete gene sequence of the MrHSP37 is 2,425 base pairs in length, and encodes 338 amino acids. MrHSP37 contains a long heat shock protein family profile in the amino acid sequence between 205 and 288. The mRNA expressions of MrHSP37 in healthy and the infectious hypodermal and hematopoietic necrosis virus (IHHNV) challenged M. rosenbergii were examined using quantitative real time polymerase chain reaction (qRT-PCR). MrHSP37 is highly expressed in hepatopancreas and all the other tissues (walking leg, gills, muscle, stomach, haemocyte, intestine, pleopods, brain and eye stalk) of M. rosenbergii taken for analysis. The expression is strongly up-regulated after IHHNV challenge. To understand its biological activity, the recombinant MrHSP37 gene was constructed and expressed in Escherichia coli BL21 (DE3). The results of ATPase assay showed that the recombinant MrHSP37 protein exhibited apparent ATPase activity which increased with the concentration of the protein. And also the purified recombinant MrHSP37 protein was used for thermal aggregation assay (chaperone activity). It showed that the recombinant MrHSP37 protein is an active chaperone in this assay. Taken together, these results suggest that MrHSP37 is potentially involved in the immune responses against IHHNV challenge in M. rosenbergii.
In this study, we reported a full length of catalase gene (designated as MrCat), identified from the transcriptome database of freshwater prawn Macrobrachium rosenbergii. The complete gene sequence of the MrCat is 2504 base pairs in length, and encodes 516 amino acids. The MrCat protein contains three domains such as catalase 1 (catalase proximal heme-ligand signature) at 350-358, catalase 2 (catalase proximal active site signature) at 60-76 and catalase 3 (catalase family profile) at 20-499. The mRNA expressions of MrCat in healthy and the infectious hypodermal and hematopoietic necrosis virus (IHHNV) challenged M. rosenbergii were examined using quantitative real time polymerase chain reaction (qRT-PCR). The MrCat is highly expressed in digestive tract and all the other tissues (walking leg, gills, muscle, hemocyte, hepatopancreas, pleopods, brain and eye stalk) of M. rosenbergii taken for analysis. The expression is strongly up-regulated in digestive tract after IHHNV challenge. To understand its biological activity, the recombinant MrCat gene was constructed and expressed in Escherichia coli BL21 (DE3). The recombinant MrCat existed in high thermal stability and broad spectrum of pH, which showed over 95% enzyme activity between pH 5 and 10.5, and was stable from 40 °C to 70 °C, and exhibited 85-100% enzyme activity from 30 °C to 40 °C.
Caspase 3c (MrCasp3c) was sequenced from the freshwater giant prawn Macrobrachium rosenbergii using Illumina Solexa Genome Analyzer Technique. MrCasp3c consisted of 2080 bp nucleotide encoded 521 polypeptide with an estimated molecular mass of 59 kDa. MrCasp3c sequence contains caspase family p20 domain profile and caspase family p10 domain profile at 236-367 and 378-468 respectively. The quantitative real time PCR analysis revealed a broad expression of MrCasp3c with the highest expression in haemocyte and the lowest in stomach. The expression of MrCasp3c after challenge with the infectious hypodermal and haematopoietic necrosis virus (IHHNV) was tested in haemocyte. In addition, MrCasp3c was expressed in Escherichia coli by prokaryotic expression plasmid pMAL-c2x. The enzyme activity of MrCasp3c was also found to be up-regulated by IHHNV in haemocyte and hepatopancreas tissues. This study suggested that MrCasp3c may be an effector caspase associated with the induction of apoptosis which is potentially involved in the immune defence of M. rosenbergii.