Displaying all 5 publications

Abstract:
Sort:
  1. Dzulkarnain AA, Che Azid N
    Med J Malaysia, 2014 Aug;69(4):156-61.
    PMID: 25500842 MyJurnal
    AIM OF STUDY: This study investigated the consistency in Auditory Brainstem Response (ABR) waveform evaluations between two audiologists (inter-audiologist agreement) and within each of the audiologist (intra-audiologist agreement).
    METHODS: Two audiologists from one of the audiology clinics in Kuantan, Pahang, Malaysia were involved in this study. Both audiologists were required to identify and mark the presence of Waves I, III and V in 66 ABR waveforms. Over a one-month interval, each audiologist was required to carry out the same procedure on the same ABR waveforms. This process was continued until we had three separate reviews from each audiologist.
    RESULTS: There was a high inter-audiologist ABR waveform identification agreement (over the range 81.71-89.77%), but a lower intra-audiologist ABR waveform identification agreement (over the range 50%-78%) for both audiologists. Our results also showed a high intra-audiologist ABR latency agreement within 0.2 ms (>90%), but a slightly lower inter-audiologist latency agreement (75-84%) within 0.2 ms.
    CONCLUSION: Our results support the need for the clinic to implement further strategies for improving the respective lower agreements and consistencies. These include conducting a continuous education program and using an objective algorithm to support their interpretations.

    Study site:; International Islamic University, Malaysia (IIUM) Hearing
    and Speech Clinic
  2. Jamal FN, Arafat Dzulkarnain AA, Shahrudin FA, Marzuki MN
    J Audiol Otol, 2021 Jan;25(1):14-21.
    PMID: 32575950 DOI: 10.7874/jao.2020.00073
    BACKGROUND AND OBJECTIVES: There is growing interest in the use of the Level-specific (LS) CE-Chirp® stimulus in auditory brainstem response (ABR) due to its ability to produce prominent ABR waves with robust amplitudes. There are no known studies that investigate the test-retest reliability of the ABR to the LS CE-Chirp® stimulus. The present study aims to investigate the test-retest reliability of the ABR to the LS CE-Chirp® stimulus and compare its reliability with the ABR to standard click stimulus at multiple intensity levels in normal-hearing adults.

    SUBJECTS AND METHODS: Eleven normal-hearing adults participated. The ABR test was repeated twice in the same clinical session and conducted again in another session. The ABR was acquired using both the click and LS CE-Chirp® stimuli at 4 presentation levels (80, 60, 40, and 20 dBnHL). Only the right ear was tested using the ipsilateral electrode montage. The reliability of the ABR findings (amplitudes and latencies) to the click and LS CE-Chirp® stimuli within the same clinical session and between the two clinical sessions was calculated using an intra-class correlation coefficient analysis (ICC).

    RESULTS: The results showed a significant correlation of the ABR findings (amplitude and latencies) to both stimuli within the same session and between the clinical sessions. The ICC values ranged from moderate to excellent.

    CONCLUSIONS: The ABR results from both the LS CE-Chirp® and click stimuli were consistent and reliable over the two clinical sessions suggesting that both stimuli can be used for neurological diagnoses with the same reliability.

  3. Dzulkarnain AA, Rahmat S, Mohd Puzi NA, Badzis M
    Med J Malaysia, 2017 02;72(1):37-45.
    PMID: 28255138 MyJurnal
    INTRODUCTION: This discussion paper reviews and synthesises the literature on simulated learning environment (SLE) from allied health sciences, medical and nursing in general and audiology specifically. The focus of the paper is on discussing the use of high-fidelity (HF) SLE and describing the challenges for developing a HF SLE for clinical audiology training.

    METHODS: Through the review of the literature, this paper discusses seven questions, (i) What is SLE? (ii) What are the types of SLEs? (iii) How is SLE classified? (iv) What is HF SLE? (v) What types of SLEs are available in audiology and their level of fidelity? (vi) What are the components needed for developing HF SLE? (vii) What are the possible types of HF SLEs that are suitable for audiology training? Publications were identified by structured searches from three major databases PubMed, Web of Knowledge and PsychInfo and from the reference lists of relevant articles. The authors discussed and mapped the levels of fidelity of SLE audiology training modules from the literature and the learning domains involved in the clinical audiology courses.

    RESULTS: The discussion paper has highlighted that most of the existing SLE audiology training modules consist of either low- or medium-fidelity types of simulators. Those components needed to achieve a HF SLE for audiology training are also highlighted.

    CONCLUSION: Overall, this review recommends that the combined approach of different levels and types of SLE could be used to obtain a HF SLE training module in audiology training.

  4. Dzulkarnain AA, Wan Mhd Pandi WM, Wilson WJ, Bradley AP, Sapian F
    Int J Audiol, 2014 Aug;53(8):514-21.
    PMID: 24702636 DOI: 10.3109/14992027.2014.897763
    To determine if a computer simulation can be used to improve the ability of audiology students to analyse ABR waveforms.
  5. Dzulkarnain AA, Wan Mhd Pandi WM, Rahmat S, Zakaria N'
    Int J Audiol, 2015;54(12):881-8.
    PMID: 26197885 DOI: 10.3109/14992027.2015.1055840
    To systematically review the relevant peer-review literature investigating the outcome of simulated learning environment (SLE) training in audiology education.
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links