METHODS: We performed a retrospective analysis of data from 759 patients with biopsy-proven NAFLD (24% with advanced fibrosis), seen at 10 centers in 9 countries in Asia, from 2006 through 2018. By using liver biopsies as the reference standard, we calculated percentages of misclassifications and indeterminate or discordant results from assessments made based on fibrosis scores (NAFLD fibrosis score [NFS] or Fibrosis-4 score) and liver stiffness measurements (LSMs), alone or in combination. The analysis was repeated using randomly selected subgroups with a different prevalence of advanced fibrosis (histologic fibrosis stage ≥F3).
RESULTS: In groups in which 3.7% and 10% of patients had advanced fibrosis, a 2-step approach (using the NFS followed by LSM only for patients with indeterminate or high NFS) and using a gray zone of 10 to 15 kPa for LSM, produced indeterminate or discordant results for 6.9% of patients and misclassified 2.7% of patients; only 25.6% of patients required LSM. In the group in which 10% of patients had advanced fibrosis, the same approach produced indeterminate or discordant results for 7.9% of patients and misclassified 6.6% of patients; only 27.4% of patients required LSM. In groups in which 24% and 50% of patients had advanced fibrosis, using LSM ≥10 kPa alone for the diagnosis of advanced fibrosis had the highest accuracy and misclassified 18.1% and 18.3% of patients, respectively. These results were similar when the Fibrosis-4 score was used in place of NFS.
CONCLUSIONS: In a retrospective analysis, we found that a 2-step approach using fibrosis scores followed by LSM most accurately detects advanced fibrosis in populations with a low prevalence of advanced fibrosis. However, LSM ≥10 kPa identifies patients with advanced fibrosis with the highest level of accuracy in populations with a high prevalence of advanced fibrosis.
AIM: To identify the association of baseline GGT level and QRISK2 score among patients with biopsy-proven nonalcoholic fatty liver disease (NAFLD).
METHODS: This was a retrospective study involving 1535 biopsy-proven NAFLD patients from 10 Asian centers in 8 countries using data collected by the Gut and Obesity in Asia (referred to as "GO ASIA") workgroup. All patients with available baseline GGT levels and all 16 variables for the QRISK2 calculation (QRISK2-2017; developed by researchers at the United Kingdom National Health Service; https://qrisk.org/2017/; 10-year cardiovascular risk estimation) were included and compared to healthy controls with the same age, sex, and ethnicity. Relative risk was reported. QRISK2 score > 10% was defined as the high-CVD-risk group. Fibrosis stages 3 and 4 (F3 and F4) were considered advanced fibrosis.
RESULTS: A total of 1122 patients (73%) had complete data and were included in the final analysis; 314 (28%) had advanced fibrosis. The median age (interquartile range [IQR]) of the study population was 53 (44-60) years, 532 (47.4%) were females, and 492 (43.9%) were of Chinese ethnicity. The median 10-year CVD risk (IQR) was 5.9% (2.6-10.9), and the median relative risk of CVD over 10 years (IQR) was 1.65 (1.13-2.2) compared to healthy individuals with the same age, sex, and ethnicity. The high-CVD-risk group was significantly older than the low-risk group (median [IQR]: 63 [59-67] vs 49 [41-55] years; P < 0.001). Higher fibrosis stages in biopsy-proven NAFLD patients brought a significantly higher CVD risk (P < 0.001). Median GGT level was not different between the two groups (GGT [U/L]: Median [IQR], high risk 60 [37-113] vs low risk 66 [38-103], P = 0.56). There was no correlation between baseline GGT level and 10-year CVD risk based on the QRISK2 score (r = 0.02).
CONCLUSION: The CVD risk of NAFLD patients is higher than that of healthy individuals. Baseline GGT level cannot predict CVD risk in NAFLD patients. However, advanced fibrosis is a predictor of a high CVD risk.
METHODS: 1812 biopsy-proven NAFLD patients across nine countries in Asia assessed between 2006 and 2019 were pooled into a curated clinical registry. Demographic, metabolic and histological differences between non-obese and obese NAFLD patients were evaluated. The performance of Fibrosis-4 index for liver fibrosis (FIB-4) and NAFLD fibrosis score (NFS) to identify advanced liver disease across the varying obesity subgroups was compared. A random forest analysis was performed to identify novel predictors of fibrosis and steatohepatitis in non-obese patients.
FINDINGS: One-fifth (21.6%) of NAFLD patients were non-obese. Non-obese NAFLD patients had lower proportions of NASH (50.5% vs 56.5%, p = 0.033) and advanced fibrosis (14.0% vs 18.7%, p = 0.033). Metabolic syndrome in non-obese individuals was associated with NASH (OR 1.59, 95% CI 1.01-2.54, p = 0.047) and advanced fibrosis (OR 1.88, 95% CI 0.99-3.54, p = 0.051). FIB-4 performed better than the NFS score (AUROC 81.5% vs 73.7%, p
METHODS: We recruited ACLF patients between 2009 and 2020 from APASL-ACLF Research Consortium (AARC). Their clinical data, investigations and organ involvement were serially noted for 90-days and utilized for AI modelling. Data were split randomly into train and validation sets. Multiple AI models, MELD and AARC-Model, were created/optimized on train set. Outcome prediction abilities were evaluated on validation sets through area under the curve (AUC), accuracy, sensitivity, specificity and class precision.
RESULTS: Among 2481 ACLF patients, 1501 in train set and 980 in validation set, the extreme gradient boost-cross-validated model (XGB-CV) demonstrated the highest AUC in train (0.999), validation (0.907) and overall sets (0.976) for predicting 30-day outcomes. The AUC and accuracy of the XGB-CV model (%Δ) were 7.0% and 6.9% higher than the standard day-7 AARC model (p
AIMS: We evaluated the performance of machine learning (ML) and non-patented scores for ruling out SF among NAFLD/MASLD patients.
METHODS: Twenty-one ML models were trained (N = 1153), tested (N = 283), and validated (N = 220) on clinical and biochemical parameters of histologically-proven NAFLD/MASLD patients (N = 1656) collected across 14 centres in 8 Asian countries. Their performance for detecting histological-SF (≥F2fibrosis) were evaluated with APRI, FIB4, NFS, BARD, and SAFE (NPV/F1-score as model-selection criteria).
RESULTS: Patients aged 47 years (median), 54.6% males, 73.7% with metabolic syndrome, and 32.9% with histological-SF were included in the study. Patients with SFvs.no-SF had higher age, aminotransferases, fasting plasma glucose, metabolic syndrome, uncontrolled diabetes, and NAFLD activity score (p 140) was next best in ruling out SF (NPV of 0.757, 0.724 and 0.827 in overall, test and validation set).
CONCLUSIONS: ML with clinical, anthropometric data and simple blood investigations perform better than FIB-4 for ruling out SF in biopsy-proven Asian NAFLD/MASLD patients.
METHODS: We estimated global and regional temporal trends in the burden of cancer attributable to high BMI, and the contributions of various cancer types using the framework of the Global Burden of Disease Study.
RESULTS: From 2010 to 2019, there was a 35 % increase in deaths and a 34 % increase in disability-adjusted life-years from cancers attributable to high BMI. The age-standardized death rates for cancer attributable to high BMI increased over the study period (annual percentage change [APC] +0.48 %, 95 % CI 0.22 to 0.74 %). The greatest number of deaths from cancer attributable to high BMI occurred in Europe, but the fastest-growing age-standardized death rates and disability-adjusted life-years occurred in Southeast Asia. Liver cancer was the fastest-growing cause of cancer mortality (APC: 1.37 %, 95 % CI 1.25 to 1.49 %) attributable to high BMI.
CONCLUSION: The global burden of cancer-related deaths attributable to high BMI has increased substantially from 2010 to 2019. The greatest increase in age-standardized death rates occurred in Southeast Asia, and liver cancer is the fastest-growing cause of cancer mortality attributable to high BMI. Urgent and sustained measures are required at a global and regional level to reverse these trends and slow the growing burden of cancer attributed to high BMI.
METHODS: ACLF patients recruited from the APASL-ACLF Research Consortium (AARC) were followed up till 30 days, death or transplantation, whichever earlier. Clinical details, including dynamic grades of HE and laboratory data, including ammonia levels, were serially noted.
RESULTS: Of the 3009 ACLF patients, 1315 (43.7%) had HE at presentation; grades I-II in 981 (74.6%) and grades III-IV in 334 (25.4%) patients. The independent predictors of HE at baseline were higher age, systemic inflammatory response, elevated ammonia levels, serum protein, sepsis and MELD score (p
METHODS: Consecutive ACLF patients were monitored for the development of SIRS/sepsis and associated complications and followed till 90 days, liver transplant or death.
RESULTS: Of 561 patients, 201 (35.8%) had no SIRS and 360 (64.2%) had SIRS with or without infection. New onset SIRS and sepsis developed in 74.6% and 8% respectively in a median of 7 (range 4-15) days, at a rate of 11% per day. The cumulative incidence of new SIRS was 29%, 92.8%, and 100% by days 4, 7, and 15. Liver failure, that is, bilirubin > 12 mg/dL (odds ratio [OR] = 2.5 [95% confidence interval {CI} = 1.05-6.19], P = 0.04) at days 0 and 4, and renal failure at day 4 (OR = 6.74 [95%CI = 1.50-13.29], P = 0.01), independently predicted new onset SIRS. Absence of SIRS in the first week was associated with reduced incidence of organ failure (20% vs 39.4%, P = 0.003), as was the 28-day (17.6% vs 36%, P = 0.02) and 90-day (27.5% vs 51%,P = 0.002) mortality. The 90-day mortality was 61.6% in the total cohort and that for those having no SIRS and SIRS at presentation were 42.8% and 65%, respectively (P
METHODS: Patients with AIH-ACLF without baseline infection/hepatic encephalopathy were identified from APASL ACLF research consortium (AARC) database. Diagnosis of AIH-ACLF was based mainly on histology. Those treated with steroids were assessed for non-response (defined as death or liver transplant at 90 days for present study). Laboratory parameters, AARC, and model for end-stage liver disease (MELD) scores were assessed at baseline and day 3 to identify early non-response. Utility of dynamic SURFASA score [- 6.80 + 1.92*(D0-INR) + 1.94*(∆%3-INR) + 1.64*(∆%3-bilirubin)] was also evaluated. The performance of early predictors was compared with changes in MELD score at 2 weeks.
RESULTS: Fifty-five out of one hundred and sixty-five patients (age-38.2 ± 15.0 years, 67.2% females) with AIH-ACLF [median MELD 24 (IQR: 22-27); median AARC score 7 (6-9)] given oral prednisolone 40 (20-40) mg per day were analyzed. The 90 day transplant-free survival in this cohort was 45.7% with worse outcomes in those with incident infections (56% vs 28.0%, p = 0.03). The AUROC of pre-therapy AARC score [0.842 (95% CI 0.754-0.93)], MELD [0.837 (95% CI 0.733-0.94)] score and SURFASA score [0.795 (95% CI 0.678-0.911)] were as accurate as ∆MELD at 2 weeks [0.770 (95% CI 0.687-0.845), p = 0.526] and better than ∆MELD at 3 days [0.541 (95% CI 0.395, 0.687), p 6, MELD score > 24 with SURFASA score ≥ - 1.2, could identify non-responders at day 3 (concomitant- 75% vs either - 42%, p
METHODOLOGY: One thousand two hundred and sixteen prospectively enrolled patients with ACLF (males 98%, mean age 42.5 ± 9.4 years, mean CTP, MELD and AARC scores of 12 ± 1.4, 29.7 ± 7 and 9.8 ± 2 respectively) from the Asian Pacific Association for the Study of the Liver (APASL) ACLF Research Consortium (AARC) database were analysed retrospectively. Patients with or without metabolic risk factors were compared for severity (CTP, MELD, AARC scores) and day 30 and 90 mortality. Information on overweight/obesity, type 2 diabetes mellitus (T2DM), hypertension and dyslipidaemia were available in 1028 (85%), 1019 (84%), 1017 (84%) and 965 (79%) patients respectively.
RESULTS: Overall, 392 (32%) patients died at day 30 and 528 (43%) at day 90. Overweight/obesity, T2DM, hypertension and dyslipidaemia were present in 154 (15%), 142 (14%), 66 (7%) and 141 (15%) patients, respectively, with no risk factors in 809 (67%) patients. Patients with overweight/obesity had higher MELD scores (30.6 ± 7.1 vs 29.2 ± 6.9, P = .007) and those with dyslipidaemia had higher AARC scores (10.4 ± 1.2 vs 9.8 ± 2, P = .014). Overweight/obesity was associated with increased day 30 mortality (HR 1.54, 95% CI 1.06-2.24, P = .023). None of other metabolic risk factors, alone or in combination, had any impact on disease severity or mortality. On multivariate analysis, overweight or obesity was significantly associated with 30-day mortality (aHR 1.91, 95% CI 1.41-2.59, P
METHODS: Altogether 1021 patients were analyzed for the severity and organ failure at admission to determine transplant eligibility and 28 day survival with or without transplant.
RESULTS: The ACLF cohort [mean age 44 ± 12.2 years, males 81%) was of sick patients; 55% willing for LT at admission, though 63% of them were ineligible due to sepsis or organ failure. On day 4, recovery in sepsis and/or organ failure led to an improvement in transplant eligibility from 37% at baseline to 63.7%. Delay in LT up to 7 days led to a higher incidence of multiorgan failure (p
PATIENTS AND METHODS: Data of 2360 patients from APASL-ACLF Research Consortium (AARC) was analysed. Multivariate logistic regression model (PIRO score) was developed from a derivation cohort (n=1363) which was validated in another prospective multicentric cohort of acute on chronic liver failure patients (n=997).
RESULTS: Factors significant for P component were serum creatinine[(≥2 mg/dL)OR 4.52, 95% CI (3.67-5.30)], bilirubin [(<12 mg/dL,OR 1) vs (12-30 mg/dL,OR 1.45, 95% 1.1-2.63) vs (≥30 mg/dL,OR 2.6, 95% CI 1.3-5.2)], serum potassium [(<3 mmol/LOR-1) vs (3-4.9 mmol/L,OR 2.7, 95% CI 1.05-1.97) vs (≥5 mmol/L,OR 4.34, 95% CI 1.67-11.3)] and blood urea (OR 3.73, 95% CI 2.5-5.5); for I component nephrotoxic medications (OR-9.86, 95% CI 3.2-30.8); for R component,Systemic Inflammatory Response Syndrome,(OR-2.14, 95% CI 1.4-3.3); for O component, Circulatory failure (OR-3.5, 95% CI 2.2-5.5). The PIRO score predicted acute kidney injury with C-index of 0.95 and 0.96 in the derivation and validation cohort. The increasing PIRO score was also associated with mortality (P
METHODS: Prospectively collected data of ACLF patients from APASL-ACLF Research Consortium (AARC) was analyzed for 30-day outcomes. The models evaluated at days 0, 4, and 7 of presentation for 30-day mortality were: AARC (model and score), CLIF-C (ACLF score, and OF score), NACSELD-ACLF (model and binary), SOFA, APACHE-II, MELD, MELD-Lactate, and CTP. Evaluation parameters were discrimination (c-indices), calibration [accuracy, sensitivity, specificity, and positive/negative predictive values (PPV/NPV)], Akaike/Bayesian Information Criteria (AIC/BIC), Nagelkerke-R2, relative prediction errors, and odds ratios.
RESULTS: Thirty-day survival of the cohort (n = 2864) was 64.9% and was lowest for final-AARC-grade-III (32.8%) ACLF. Performance parameters of all models were best at day 7 than at day 4 or day 0 (p 12 had the lowest 30-day survival (5.7%).
CONCLUSIONS: APASL-ACLF is often a progressive disease, and models assessed up to day 7 of presentation reliably predict 30-day mortality. Day-7 AARC model is a statistically robust tool for classifying risk of death and accurately predicting 30-day outcomes with relatively lower prediction errors. Day-7 AARC score > 12 may be used as a futility criterion in APASL-ACLF patients.
METHODS: We identified drugs as precipitants of ACLF among prospective cohort of patients with ACLF from the Asian Pacific Association of Study of Liver (APASL) ACLF Research Consortium (AARC) database. Drugs were considered precipitants after exclusion of known causes together with a temporal association between exposure and decompensation. Outcome was defined as death from decompensation.
RESULTS: Of the 3,132 patients with ACLF, drugs were implicated as a cause in 329 (10.5%, mean age 47 years, 65% men) and other nondrug causes in 2,803 (89.5%) (group B). Complementary and alternative medications (71.7%) were the commonest insult, followed by combination antituberculosis therapy drugs (27.3%). Alcoholic liver disease (28.6%), cryptogenic liver disease (25.5%), and non-alcoholic steatohepatitis (NASH) (16.7%) were common causes of underlying liver diseases. Patients with drug-induced ACLF had jaundice (100%), ascites (88%), encephalopathy (46.5%), high Model for End-Stage Liver Disease (MELD) (30.2), and Child-Turcotte-Pugh score (12.1). The overall 90-day mortality was higher in drug-induced (46.5%) than in non-drug-induced ACLF (38.8%) (P = 0.007). The Cox regression model identified arterial lactate (P < 0.001) and total bilirubin (P = 0.008) as predictors of mortality.
DISCUSSION: Drugs are important identifiable causes of ACLF in Asia-Pacific countries, predominantly from complementary and alternative medications, followed by antituberculosis drugs. Encephalopathy, bilirubin, blood urea, lactate, and international normalized ratio (INR) predict mortality in drug-induced ACLF.
METHODS AND RESULTS: Using a Delphi-based approach, a multidisciplinary panel of 50 international experts from 26 countries reached a consensus on some of the open research questions regarding the link between MAFLD and CKD.
CONCLUSIONS: This Delphi-based consensus statement provided guidance on the epidemiology, mechanisms, management and treatment of MAFLD and CKD, as well as the relationship between the severity of MAFLD and risk of CKD, which establish a framework for the early prevention and management of these two common and interconnected diseases.