Displaying all 20 publications

Abstract:
Sort:
  1. Doolaanea AA, Mansor N', Mohd Nor NH, Mohamed F
    J Microencapsul, 2014;31(6):600-8.
    PMID: 24697178 DOI: 10.3109/02652048.2014.898709
    The aim of this study is to investigate the cell uptake of Nigella sativa oil (NSO)-PLGA microparticle by neuron-like PC-12 cells in comparison to surfactants; hydrophilic (Tween 80 & Triton X100) and hydrophobic (Span 80). Solvent evaporation was used to precisely control the size, zeta potential and morphology of the particle. The results revealed varying efficiencies of the cell uptake by PC-12 cells, which may be partially attributed to the surface hydrophobicity of the microparticles. Interestingly, the uptake efficiency of PC-12 cells was higher with the more hydrophilic microparticle. NSO microparticle showed evidence of being preferably internalised by mitotic cells. Tween 80 microparticle showed the highest cell uptake efficiency with a concentration-dependent pattern suggesting its use as uptake enhancer for non-scavenging cells. In conclusion, PC-12 cells can take up NSO-PLGA microparticle which may have potential in the treatment of neurodegenerative disease.
  2. Doolaanea AA, Mansor N', Mohd Nor NH, Mohamed F
    J Microencapsul, 2016 Mar;33(2):114-26.
    PMID: 26982435 DOI: 10.3109/02652048.2015.1134689
    Alzheimer disease involves genetic and non-genetic factors and hence it is rational to be treated with genetic and non-genetic therapeutic agents. Nigella sativa has multiple therapeutic properties including neuroregeneration. Nigella sativa oil (NSO) was encapsulated in PLGA nanoparticles and pDNA was loaded either by adsorption on chitosan-modified particles or encapsulation within PLGA nanoparticles. The particle size and zeta potential of NSO-pDNA-chitosan-PLGA nanoparticles were highly dependent on the medium and exhibited high burst release. Meanwhile, NSO-pDNA-PLGA nanoparticles were more consistent with lower burst release. The fabricated nanoparticles revealed the expected outcomes of both pDNA and NSO. The pDNA transfected N2a cell while the encapsulated NSO promoted neurite outgrowth that is crucial for neuroregeneration. Results from this study suggest that NSO could be added to the gene delivery carrier to enhance treatment benefits for Alzheimer disease.
  3. Ibrahim WN, Muizzuddin Bin Mohd Rosli L, Doolaanea AA
    Int J Nanomedicine, 2020;15:8059-8074.
    PMID: 33116518 DOI: 10.2147/IJN.S269340
    Introduction: Thymoquinone (TQ) is the main active compound extracted from Nigella sativa a traditional herb with wide therapeutic applications and recognizable anticancer properties. This study aimed to formulate and characterize TQ-nanoparticles using PLGA as a biocompatible coating material (TQ-PLGA NPs) with the evaluation of its therapeutic properties in human melanoma cancer cells.

    Methods: The TQ-PLGA NPs were prepared and characterized for size, zeta potential, encapsulation efficiency, and release profile.

    Results: The particle size was 147.2 nm, with 22.1 positive zeta potential and 96.8% encapsulation efficiency. The NPs released 45.6% of the encapsulated TQ within 3 h followed by characteristic sustained release over 7 days with a total of 69.7% cumulative release. TQ-PLGA NPs were taken up effectively by the cells in a time-dependent manner up to 24 h. Higher cell toxicity was determined within the first 24 h in melanoma cells due to the rapid release of TQ from the NPs and its low stability in the cell culture media.

    Conclusion: TQ-PLGA NPs is a potential anticancer agent taking advantage of the sustained release and tailored size that allows accumulation in the cancer tissue by the enhanced permeability and retention effect. However, stability problems of the active ingredient were address in this study and requires further investigation.

  4. Mawazi SM, Doolaanea AA, Hadi HA, Chatterjee B
    Int J Pharm, 2021 Jun 01;602:120638.
    PMID: 33901596 DOI: 10.1016/j.ijpharm.2021.120638
    Crystallinity plays a vital role in the pharmaceutical industry. It affects drug manufacturing, development processes, and the stability of pharmaceutical dosage forms. An objective of this study was to measure and analyze the carbamazepine (CBZ) crystallinity before and after formulation. Moreover, it intended to determine the extent to which the crystallinity of CBZ would affect the drug loading, the particle size, and the release of CBZ from the microparticles. The CBZ microparticles were prepared by encapsulating CBZ in ethyl cellulose (EC) polymer using a solvent evaporation method. EC was used here as a release modifier polymer and polyvinyl alcohol (PVA) as an aqueous phase stabilizer. Factorial design was used to prepare the CBZ microparticle formulations, including polymer concentration, solvent (dichloromethane, ethyl acetate), PVA concentrations factor, the homogenization time, and homogenization speed. The crystallinity of CBZ was calculated utilizing differential scanning calorimetry (DSC) thermal analysis. The crystallinity was calculated from the enthalpy of CBZ. Enthalpy was analyzed from the area under the curve peak of CBZ standard and CBZ-loaded microparticles. DSC and ATR-FTIR assessed the possible interaction between CBZ and excipients in the microparticle. The prepared CBZ microparticles showed various changes in the crystallinity rate of CBZ. The changes in the rate of CBZ crystallinity had different effects on the particle size, the drug loading, and the release of CBZ from the polymer. Statistically, all studied factors significantly affected the crystallinity of CBZ after formulation to microparticles.
  5. Alallam B, Oo MK, Ibrahim WN, Doolaanea AA
    J Cell Mol Med, 2022 01;26(1):235-238.
    PMID: 34873828 DOI: 10.1111/jcmm.17078
    Due to the restrictions in accessing research laboratories and the challenges in providing proper storage and transportation of cells during the COVID-19 pandemic, having an effective and feasible mean to solve these challenges would be of immense help. Therefore, we developed a 3D culture setting of cancer cells using alginate beads and tested its effectiveness in different storage and transportation conditions. The viability and proliferation of cancer cells were assessed using trypan blue staining and quantitative CCK-8 kit, respectively. The developed beads allowed cancer cells survival up to 4 weeks with less frequent maintenance measures such as change of the culture media or subculture of cells. In addition, the recovery of cancer cells and proliferation pattern were significantly faster with better outcomes in the developed 3D alginate beads compared to the standard cryopreservation of cells or the 2D culture conditions. The 3D alginate beads also supported the viability of cells while the shipment at room temperature for a duration of up to 5 days with no humidity or CO2  support. Therefore, 3D culture in alginate beads can be used to store or ship biological cells with ease at room temperature with minimal preparations.
  6. Choukaife H, Seyam S, Alallam B, Doolaanea AA, Alfatama M
    Int J Nanomedicine, 2022;17:3933-3966.
    PMID: 36105620 DOI: 10.2147/IJN.S375229
    As per the WHO, colorectal cancer (CRC) caused around 935,173 deaths worldwide in 2020 in both sexes and at all ages. The available anticancer therapies including chemotherapy, radiotherapy and anticancer drugs are all associated with limited therapeutic efficacy, adverse effects and low chances. This has urged to emerge several novel therapeutic agents as potential therapies for CRC including synthetic and natural materials. Orally administrable and targeted drug delivery systems are attractive strategies for CRC therapy as they minimize the side effects, enhance the efficacy of anticancer drugs. Nevertheless, oral drug delivery till today faces several challenges like poor drug solubility, stability, and permeability. Various oral nano-based approaches and targeted drug delivery systems have been developed recently, as a result of the ability of nanoparticles to control the release of the encapsulant, drug targeting and reduce the number of dosages administered. The unique physicochemical properties of chitosan polymer assist to overcome oral drug delivery barriers and target the colon tumour cells. Chitosan-based nanocarriers offered additional improvements by enhancing the stability, targeting and bioavailability of several anti-colorectal cancer agents. Modified chitosan derivatives also facilitated CRC targeting through strengthening the protection of encapsulant against acidic and enzyme degradation of gastrointestinal track (GIT). This review aims to provide an overview of CRC pathology, therapy and the barriers against oral drug delivery. It also emphasizes the role of nanotechnology in oral drug targeted delivery system and the growing interest towards chitosan and its derivatives. The present review summarizes the relevant works to date that have studied the potential applications of chitosan-based nanocarrier towards CRC treatment.
  7. Ansary RH, Rahman MM, Awang MB, Katas H, Hadi H, Doolaanea AA
    Drug Deliv Transl Res, 2016 06;6(3):308-18.
    PMID: 26817478 DOI: 10.1007/s13346-016-0278-y
    The purpose of this study was to fabricate insulin-loaded double-walled and single-polymer poly(lactide-co-glycolide) (PLGA) microspheres using a fast degrading glucose core, hydroxyl-terminated poly(lactide-co-glycolide) (Glu-PLGA), and a moderate degrading carboxyl-terminated PLGA polymers. A modified water-in-oil-in-oil-in-water (w/o/o/w) emulsion solvent evaporation technique was employed to prepare double-walled microspheres, whereas single-polymer microspheres were fabricated by a conventional water-in-oil-in-water (w/o/w) emulsion solvent evaporation method. The effect of fabrication techniques and polymer characteristics on microspheres size, morphology, encapsulation efficiency, in vitro release, and insulin stability was evaluated. The prepared double-walled microspheres were essentially non-porous, smooth surfaced, and spherical in shape, whereas single-polymer microspheres were highly porous. Double-walled microspheres exhibited a significantly reduced initial burst followed by sustained and almost complete release of insulin compared to single-polymer microspheres. Initial burst release was further suppressed from double-walled microspheres when the mass ratio of the component polymers was increased. In conclusion, double-walled microspheres made of Glu-PLGA and PLGA can be a potential delivery system of therapeutic insulin.
  8. Alkhatib H, Mawazi SM, Al-Mahmood SMA, Zaiter A, Doolaanea AA
    J Pharm Bioallied Sci, 2020 07 18;12(3):284-288.
    PMID: 33100788 DOI: 10.4103/jpbs.JPBS_208_20
    Thymoquinone (TQ) is the major active compound in black seed oil (BSO). Many pharmacological effects of TQ, such as anti-inflammatory, hypoglycemic, antioxidant, immune stimulator, and anticancer, have been reported. TQ can be considered as a biomarker for BSO, but its content in the commercial products is rarely reported. TQ content varies based on the oil source and extraction method. This study aimed to quantify the TQ content in the commercial BSO products in Malaysia and to evaluate whether the products can be used as a source of TQ for therapeutic benefits. TQ was quantified using an established high-performance liquid chromatography (HPLC) method. TQ human equivalent dose (HED) was calculated based on reported animal studies from literature, and theoretical BSO amount containing the TQ dose was calculated based on the HPLC analysis. TQ content in the commercial BSO products ranged from 0.07% wt/wt to 1.88% wt/wt. The product with the highest TQ concentration is approximately 27-fold higher than the product with the lowest TQ concentration. Consequently, theoretical BSO amounts needed for specific diseases varied and some products cannot provide practical amount of TQ. This study recommends the regulation of TQ content in BSO and suggests that the BSO might be fortified with extra TQ to be effectively used in some diseases.
  9. Mawazi SM, Al-Mahmood SMA, Chatterjee B, Hadi HA, Doolaanea AA
    Pharmaceutics, 2019 Sep 20;11(10).
    PMID: 31547112 DOI: 10.3390/pharmaceutics11100488
    This study aimed to develop a carbamazepine (CBZ) sustained release formulation suitable for pediatric use with a lower risk of precipitation. The CBZ was first prepared as sustained release microparticles, and then the microparticles were embedded in alginate beads, and finally, the beads were suspended in a gel vehicle. The microparticles were prepared by a solvent evaporation method utilizing ethyl cellulose as a sustained release polymer and were evaluated for particle size, encapsulation efficiency, and release profile. The beads were fabricated by the dropwise addition of sodium alginate in calcium chloride solution and characterized for size, shape, and release properties. The gel was prepared using iota carrageenan as the gelling agent and evaluated for appearance, syneresis, drug content uniformity, rheology, release profile, and stability. The microparticles exhibited a particle size of 135.01 ± 0.61 µm with a monodisperse distribution and an encapsulation efficiency of 83.89 ± 3.98%. The beads were monodispersed with an average size of 1.4 ± 0.05 mm and a sphericity factor of less than 0.05. The gel was prepared using a 1:1 ratio (gel vehicle to beads) and exhibited no syneresis, good homogeneity, and good shear-thinning properties. The release profile from the beads and from the gel was not significantly affected, maintaining similarity to the tablet form. The gel properties were maintained for one month real time stability, but the accelerated stability showed reduced viscosity and pH with time. In conclusion, CBZ in a gel sustained release dosage form combines the advantages of the suspension form in terms of dosing flexibility, and the advantages of the tablet form in regards to the sustained release profile. This dosage form should be further investigated in vivo in animal models before being considered in clinical trials.
  10. Alallam B, Altahhan S, Taher M, Mohd Nasir MH, Doolaanea AA
    Pharmaceuticals (Basel), 2020 Jul 22;13(8).
    PMID: 32707857 DOI: 10.3390/ph13080158
    Therapeutic gene editing is becoming more feasible with the emergence of the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-associated protein (Cas) system. However, the successful implementation of CRISPR/Cas9-based therapeutics requires a safe and efficient in vivo delivery of the CRISPR components, which remains challenging. This study presents successful preparation, optimization, and characterization of alginate nanoparticles (ALG NPs), loaded with two CRISPR plasmids, using electrospray technique. The aim of this delivery system is to edit a target gene in another plasmid (green fluorescent protein (GFP)). The effect of formulation and process variables were evaluated. CRISPR ALG NPs showed mean size and zeta potential of 228 nm and -4.42 mV, respectively. Over 99.0% encapsulation efficiency was achieved while preserving payload integrity. The presence of CRISPR plasmids in the ALG NPs was confirmed by Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy. The tests revealed that the nanoparticles were cytocompatible and successfully introduced the Cas9 transgene in HepG2 cells. Nanoparticles-transfected HepG2 was able to edit its target plasmid by introducing double-strand break (DSB) in GFP gene, indicating the bioactivity of CRISPR plasmids encapsulated in alginate nanoparticles. This suggests that this method is suitable for biomedical application in vitro or ex vivo. Future investigation of theses nanoparticles might result in nanocarrier suitable for in vivo delivery of CRISPR/Cas9 system.
  11. Azad AK, Doolaanea AA, Al-Mahmood SMA, Kennedy JF, Chatterjee B, Bera H
    Int J Biol Macromol, 2021 Aug 31;185:861-875.
    PMID: 34237363 DOI: 10.1016/j.ijbiomac.2021.07.019
    Peppermint oil (PO) is the most prominent oil using in pharmaceutical formulations with its significant therapeutic value. In this sense, this oil is attracting considerable attention from the scientific community due to its traditional therapeutic claim, biological and pharmacological potential in recent research. An organic solvent-free and environment-friendly electrohydrodynamic assisted (EHDA) technique was employed to prepared PO-loaded alginate microbeads. The current study deals with the development, optimization, in vitro characterization, in vivo gastrointestinal tract drug distribution and ex-vivo mucoadhesive properties, antioxidant, and anti-inflammatory effects of PO-loaded alginate microbeads. The optimization results indicated the voltage and flow rate have a significant influence on microbeads size and sphericity factor and encapsulation efficiency. All these optimized microbeads showed a better drug release profile in simulated intestinal fluid (pH 6.8) at 2 h. However, a minor release was found in acidic media (pH 1.2) at 2 h. The optimized formulation showed excellent mucoadhesive properties in ex-vivo and good swelling characterization in intestine media. The microbeads were found to be well distributed in various parts of the intestine in in vivo study. PO-loaded alginate microbeads similarly showed potential antioxidant effects with drug release. The formulation exhibited possible improvement of irritable bowel syndrome (IBS) in MO-induced rats. It significantly suppressed proinflammatory cytokines, i.e., interleukin- IL-1β, and upregulated anti-inflammatory cytokine expression, i.e., IL-10. It would be a promising approach for targeted drug release after oral administration and could be considered an anti-inflammatory therapeutic strategy for treating IBS.
  12. Azad AK, Al-Mahmood SMA, Chatterjee B, Wan Sulaiman WMA, Elsayed TM, Doolaanea AA
    Pharmaceutics, 2020 Mar 02;12(3).
    PMID: 32131539 DOI: 10.3390/pharmaceutics12030219
    Black seed oil (BSO) has been used for various therapeutic purposes around the world since ancient eras. It is one of the most prominent oils used in nutraceutical formulations and daily consumption for its significant therapeutic value is common phenomena. The main aim of this study was to develop alginate-BSO beads as a controlled release system designed to control drug release in the gastrointestinal tract (GIT). Electrospray technology facilitates formulation of small and uniform beads with higher diffusion and swelling rates resulting in process performance improvement. The effect of different formulation and process variables was evaluated on the internal and external bead morphology, size, shape, encapsulation efficiency, swelling rate, in vitro drug release, release mechanism, ex vivo mucoadhesive strength and gastrointestinal tract qualitative and quantitative distribution. All the formulated beads showed small sizes of 0.58 ± 0.01 mm (F8) and spherical shape of 0.03 ± 0.00 mm. The coefficient of weight variation (%) ranged from 1.37 (F8) to 3.93 (F5) ng. All formulations (F1-F9) were studied in vitro for release characteristics and swelling behaviour, then the release data were fitted to various equations to determine the exponent (ns), swelling kinetic constant (ks), swelling rate (%/h), correlation coefficient (r2) and release kinetic mechanism. The oil encapsulation efficiency was almost complete at 90.13% ± 0.93% in dried beads. The maximum bead swelling rate showed 982.23 (F8, r2 = 0.996) in pH 6.8 and the drug release exceeded 90% in simulated gastrointestinal fluid (pH 6.8). Moreover, the beads were well distributed throughout various parts of the intestine. This designed formulation could possibly be advantageous in terms of increased bioavailability and targeted drug delivery to the intestine region and thus may find applications in some diseases like irritable bowel syndrome.
  13. Almurisi SH, Doolaanea AA, Akkawi ME, Chatterjee B, Ahmed Saeed Aljapairai K, Islam Sarker MZ
    Drug Dev Ind Pharm, 2020 Aug;46(8):1373-1383.
    PMID: 32619118 DOI: 10.1080/03639045.2020.1791165
    OBJECTIVE: Paracetamol is a common antipyretic and analgesic medicine used in childhood illness by parents and physicians worldwide. Paracetamol has a bitter taste that is considered as a significant barrier for drug administration. This study aimed to develop an oral dosage form that is palatable and easy to swallow by pediatric patients as well as to overcome the shortcomings of liquid formulations.

    METHODS: The paracetamol was encapsulated in beads, which were prepared mainly from alginate and chitosan through electrospray technique. The paracetamol beads were sprinkled on the instant jelly prepared from glycine, ι-carrageenan and calcium lactate gluconate. The paracetamol instant jelly characteristics, in terms of physical appearance, texture, rheology, in vitro drug release and palatability were assessed on a human volunteer.

    RESULTS: The paracetamol instant jelly was easily reconstituted in 20 mL of water within 2 min to form jelly with acceptable consistency and texture. The jelly must be ingested within 30 min after reconstitution to avoid the bitter taste. The palatability assessment carried out on 12 human subjects established the similar palatability and texture of the paracetamol instant jelly dosage comparable to the commercial paracetamol suspension and was found to be even better in overcoming the aftertaste of paracetamol.

    CONCLUSION: Such findings indicate that paracetamol instant jelly will compensate for the use of sweetening and flavoring agents as well as develop pediatric dosage forms with limited undesired excipients.

  14. Hassani A, Mahmood S, Enezei HH, Hussain SA, Hamad HA, Aldoghachi AF, et al.
    Molecules, 2020 May 10;25(9).
    PMID: 32397633 DOI: 10.3390/molecules25092244
    The approach of drug delivery systems emphasizes the use of nanoparticles as a vehicle, offering the optional property of delivering drugs as a single dose rather than in multiple doses. The current study aims to improve antioxidant and drug release properties of curcumin loaded gum Arabic-sodium alginate nanoparticles (Cur/ALG-GANPs). The Cur/ALG-GANPs were prepared using the ionotropic gelation technique and further subjected to physico-chemical characterization using attenuated total reflectance-Fourier transform infrared (ATR-FTIR), X-ray diffractometry (XRD), differential scanning calorimetry (DSC), size distribution, and transmission electron microscopy (TEM). The size of Cur/ALG-GANPs ranged between 10 ± 0.3 nm and 190 ± 0.1 nm and the zeta potential was -15 ± 0.2 mV. The antioxidant study of Cur/ALG-GANPs exhibited effective radical scavenging capacity for 1,1-diphenyl-2-picrylhydrazyl (DPPH) at concentrations that ranged between 30 and 500µg/mL. Cytotoxicity was performed using MTT assay to measure their potential in inhibiting the cell growth and the result demonstrated a significant anticancer activity of Cur/ALG-GANPs against human liver cancer cells (HepG2) than in colon cancer (HT29), lung cancer (A549) and breast cancer (MCF7) cells. Thus, this study indicates that Cur/ALG-GANPs have promising anticancer properties that might aid in future cancer therapy.
  15. Al-Japairai KAS, Alkhalidi HM, Mahmood S, Almurisi SH, Doolaanea AA, Al-Sindi TA, et al.
    ACS Omega, 2020 Dec 22;5(50):32466-32480.
    PMID: 33376884 DOI: 10.1021/acsomega.0c04588
    Telmisartan suffers from low oral bioavailability due to its poor water solubility. The research work presents a formulation of solid dispersed (SD) telmisartan formulation as a ternary mixture of a drug, a polymeric carrier (poly(vinylpyrrolidone) (PVP) K30), and an alkalizer (Na2CO3). The preparation method, which was lyophilization of an aqueous solution containing the ingredients, was free from any organic solvent. The developed SD formulations resulted in a significant improvement in in vitro dissolution (>90% drug dissolution in 15 min) compared to pure telmisartan. Solid-state characterization by scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and X-ray diffraction (XRD) studies indicated the conversion of crystalline telmisartan into an amorphous form. Fourier transform infrared (FTIR) spectroscopy revealed the drug-polymer interaction that was responsible for reducing the chances of recrystallization. A short-term stability study showed that selected SD formulations were stable in terms of in vitro dissolution and retained their amorphous structure in ambient and accelerated conditions over 2 months. Selected formulations (drug/PVP K30/Na2CO3 as 1:1:2 or 1:2:2 weight ratio) resulted in >2.48 times relative oral bioavailability compared to marketed formulations. It was considered that the incorporation of an alkalizer and a hydrophilic polymer, and amorphization of telmisartan by lyophilization, could enhance in vitro dissolution and improve oral bioavailability.
  16. Almajali B, Al-Jamal HAN, Taib WRW, Ismail I, Johan MF, Doolaanea AA, et al.
    Pharmaceuticals (Basel), 2021 Apr 16;14(4).
    PMID: 33923474 DOI: 10.3390/ph14040369
    To date, natural products are widely used as pharmaceutical agents for many human diseases and cancers. One of the most popular natural products that have been studied for anticancer properties is thymoquinone (TQ). As a bioactive compound of Nigella sativa, TQ has shown anticancer activities through the inhibition of cell proliferation, migration, and invasion. The anticancer efficacy of TQ is being investigated in several human cancers such as pancreatic cancer, breast cancer, colon cancer, hepatic cancer, cervical cancer, and leukemia. Even though TQ induces apoptosis by regulating the expression of pro- apoptotic and anti-apoptotic genes in many cancers, the TQ effect mechanism on such cancers is not yet fully understood. Therefore, the present review has highlighted the TQ effect mechanisms on several signaling pathways and expression of tumor suppressor genes (TSG). Data from relevant published experimental articles on TQ from 2015 to June 2020 were selected by using Google Scholar and PubMed search engines. The present study investigated the effectiveness of TQ alone or in combination with other anticancer therapeutic agents, such as tyrosine kinase inhibitors on cancers, as a future anticancer therapy nominee by using nanotechnology.
  17. Almajali B, Al-Jamal HAN, Wan Taib WR, Ismail I, Johan MF, Doolaanea AA, et al.
    Asian Pac J Cancer Prev, 2021 Mar 01;22(3):879-885.
    PMID: 33773553 DOI: 10.31557/APJCP.2021.22.3.879
    OBJECTIVE: The natural compound, thymoquinone (TQ) has demonstrated potential anticancer properties in inhibiting cell proliferation and promoting apoptosis in myeloid leukemia cells, breast cancer cells, and others. However, the effect mechanism of TQ on AML cells still not fully understood. In this study, the authors examined the effects of TQ on the expression of JAK/STAT-negative regulator genes SOCS-1, SOCS-3, and SHP-1, and their consequences on cell proliferation and apoptosis in HL60 leukemia cells.

    METHODS: MTT and trypan blue exclusion tests were conducted to determine the 50% inhibitory concentration (IC50) and cell proliferation. FITC Annexin and Guava® reagent were used to study the cell apoptosis and examine the cell cycle phases, respectively. The expression of JAK/STAT-negative regulator genes, SOCS-1, SOCS-3, and SHP-1, was investigated using reverse transcriptase- quantitative PCR (RT-qPCR).

    RESULTS: TQ demonstrated a potential inhibition of HL60 cell proliferation and a significant increase in apoptotic cells in dose and time-dependent manner. TQ significantly induced cycle arrest at G0-G1 phase (P < 0.001) and enhanced the re-expression of JAK/STAT-negative regulator genes.

    CONCLUSION: TQ potentially inhibited HL60 cell proliferation and significantly increased apoptosis with re-expression of JAK/STAT-negative regulator genes suggesting that TQ could be a new therapeutic candidate for leukemia therapy.
    .

  18. Ansary RH, Rahman MM, Awang MB, Katas H, Hadi H, Mohamed F, et al.
    Arch Pharm Res, 2016 Sep;39(9):1242-56.
    PMID: 26818028 DOI: 10.1007/s12272-016-0710-3
    The aim of this study was to prepare a model protein, bovine serum albumin (BSA) loaded double-walled microspheres using a fast degrading glucose core, hydroxyl-terminated poly(lactide-co-glycolide) (Glu-PLGA) and a moderate-degrading carboxyl-terminated PLGA polymers to reduce the initial burst release and to eliminate the lag phase from the release profile of PLGA microspheres. The double-walled microspheres were prepared using a modified water-in-oil-in-oil-in-water (w/o/o/w) method and single-polymer microspheres were prepared using a conventional water-in-oil-in-water (w/o/w) emulsion solvent evaporation method. The particle size, morphology, encapsulation efficiency, thermal properties, in vitro drug release and structural integrity of BSA were evaluated in this study. Double-walled microspheres prepared with Glu-PLGA and PLGA polymers with a mass ratio of 1:1 were non-porous, smooth-surfaced, and spherical in shape. A significant reduction of initial burst release was achieved for the double-walled microspheres compared to single-polymer microspheres. In addition, microspheres prepared using Glu-PLGA and PLGA polymers in a mass ratio of 1:1 exhibited continuous BSA release after the small initial burst without any lag phase. It can be concluded that the double-walled microspheres made of Glu-PLGA and PLGA polymers in a mass ratio of 1:1 can be a potential delivery system for pharmaceutical proteins.
  19. Razali K, Othman N, Mohd Nasir MH, Doolaanea AA, Kumar J, Ibrahim WN, et al.
    Front Genet, 2021;12:655550.
    PMID: 33936174 DOI: 10.3389/fgene.2021.655550
    The second most prevalent neurodegenerative disorder in the elderly is Parkinson's disease (PD). Its etiology is unclear and there are no available disease-modifying medicines. Therefore, more evidence is required concerning its pathogenesis. The use of the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is the basis of most animal models of PD. MPTP is metabolized by monoamine oxidase B (MAO B) to MPP + and induces the loss of dopaminergic neurons in the substantia nigra in mammals. Zebrafish have been commonly used in developmental biology as a model organism, but owing to its perfect mix of properties, it is now emerging as a model for human diseases. Zebrafish (Danio rerio) are cheap and easy to sustain, evolve rapidly, breed transparent embryos in large amounts, and are readily manipulated by different methods, particularly genetic ones. Furthermore, zebrafish are vertebrate species and mammalian findings obtained from zebrafish may be more applicable than those derived from genetic models of invertebrates such as Drosophila melanogaster and Caenorhabditis elegans. The resemblance cannot be taken for granted, however. The goal of the present review article is to highlight the promise of zebrafish as a PD animal model. As its aminergic structures, MPTP mode of action, and PINK1 roles mimic those of mammalians, zebrafish seems to be a viable model for studying PD. The roles of zebrafish MAO, however, vary from those of the two types of MAO present in mammals. The benefits unique to zebrafish, such as the ability to perform large-scale genetic or drug screens, should be exploited in future experiments utilizing zebrafish PD models.
  20. Shaiqah MR, Salahuddin HM, Afiful Huda AYA, Izzuddin M, Nur Shafiq NIM, Nur Hakimah MA, et al.
    J Pharm Bioallied Sci, 2020 Nov;12(Suppl 2):S703-S706.
    PMID: 33828364 DOI: 10.4103/jpbs.JPBS_249_19
    Introduction: Royal jelly (RJ) has been consumed as food or as a supplement because of its high nutritional and medicinal values. A fresh harvested RJ is yellowish to whitish in color and contains proteins, free amino acids, lipids, vitamins, and sugar. Without proper storage conditions, such as at 4°C, the color of RJ changes to much darker yellow and produces a rancid smell. To prolong its shelf life, RJ is usually mixed with honey. Alginate, a natural and edible polymer derived from seaweed, is commonly used to encapsulate drugs and food due to its ability to form gels by reacting with divalent cations. However, there is a lack of research on the microencapsulation of RJ in alginate using electrospray. The electrospray technique has the advantage in producing consistent size and shape of alginate microbeads under optimum parameters.

    Aim: This research aimed to optimize electrospray-operating parameters in producing alginate-RJ microbeads.

    Materials and Methods: Optimization of alginate-RJ microbeads electrospray parameters was carried out using 24 factorial design with three center points (19 runs). The studied parameters were flow rate, high voltage, nozzle size, and tip-to-collector distance, whereas the responses were particle size, particle size distribution, and sphericity factor. The responses of each run were analyzed using Design-Expert software.

    Results: Nozzle size is a significant parameter that influences the particle size. Flow rate is a significant parameter influencing the sphericity factor.

    Conclusion: Screening of the electrospray-operating parameters paves the way in determining the significant parameters and their design space to produce consistent alginate-RJ microbeads.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links