Displaying all 3 publications

Abstract:
Sort:
  1. Haiyuni, M.Y., Aziee S., Heba A., Rosline H., Abdullah W.Z., Johan M.F., et al.
    MyJurnal
    Introduction: Isolation of specific cell types is important in providing a better understanding of hematological disorders. The knowledge of molecular biology aspect in β-thalassemia is still limited. This is because hemoglobin disorder involves various erythropoietic processes in which the genetic information is lack due to enucleation of red blood cells occurs in bone marrow. It is invasive to collect samples from bone marrow and cord blood although nucleated red blood cells (NRBCs) are abundant in these sites. NRBCs are precursors of red blood cells and typically found in peripheral blood (PB) of β-thalassemia major patients and abundant post-splenectomy. The utilization of PB NRBCs will provide a further understanding of the molecular aspects of ineffective erythropoiesis in β-thalassemia major patients. Objective: The objective of this study was to isolate the NRBCs using CD71 magnetic beads from PB of β-thalassemia major; non-splenectomy and post-splenectomy patients. Methods: NRBCs were isolated from 6 mL PB of β-thalassemia major patients based on density gradient and magnetic activated cell sorting (MACS) for NRBCs enrichment using a CD71 marker. Cell count was determined by using hemocytometer (Weber Scientific, NJ, USA) and BD FACSCantoTM II flow cytometry (Becton-Dickson, NJ, USA) was performed for method validation. Results: NRBCs were successfully isolated from the PB of both non-splenectomy and post-splenectomy β-thalassemia major patients with >90% specificity by flow cytometric analysis. The median number of enriched NRBCs (x104 ) was 58.5 (283) and 340 (338) respectively using hemocytometer. Conclusion: The MACS method was found to be convenient and efficient in the isolation of the targeted cells for downstream applications.
  2. Kwan SC, Zakaria SB, Ibrahim MF, Wan Mahiyuddin WR, Md Sofwan N, A Wahab MI, et al.
    Environ Res, 2023 Jan 01;216(Pt 2):114524.
    PMID: 36228692 DOI: 10.1016/j.envres.2022.114524
    Road transport contributes over 70% of air pollution in urban areas and is the second largest contributor to the total carbon dioxide emissions in Malaysia at 21% in 2016. Transport-related air pollutants (TRAPs) such as NOx, SO2, CO and particulate matter (PM) pose significant threats to the urban population's health. Malaysia has targeted to deploy 885,000 EV cars on the road by 2030 in the Low Carbon Mobility Blueprint (LCMB). This study aims to quantify the health co-benefits of electric vehicle adoption from their impacts on air quality in Malaysia. Two EV uptake projections, i.e. LCMB and Revised EV Adoption (REVA) projections, and five electricity generation mix scenarios were modelled up to 2040. We used comparative health risk assessment to estimate the potential changes in mortality and burden of diseases (BoD) from the emissions in each scenario. Intake fractions and exposure-risk functions were used to calculate the burden from respiratory diseases (PM2.5, NOx, SO2, CO), cardiovascular diseases and lung cancer (PM2.5). Results showed that along with a net reduction of carbon emissions across all scenarios, there could be reduced respiratory mortality from NOx by 10,200 mortality (176,200 DALYs) and SO2 by 2600 mortality (45,400 DALYs) per year in 2040. However, there could also be additional 719 mortality (9900 DALYs) per year from PM2.5 and 329 mortality (5600 DALYs) from CO per year. The scale of reduction in mortality and BoD from NOx and SO2 are significantly larger than the scale of increase from PM2.5 and CO, indicating potential net positive health impacts from the EV adoption in the scenarios. The health cost savings from the reduced BoD of respiratory mortality could reach up to RM 7.5 billion per year in 2040. In conclusion, EV is a way forward in promoting a healthy and sustainable future transport in Malaysia.
  3. Azman NF, Abdullah WZ, Hanafi S, Diana R, Bahar R, Johan MF, et al.
    Ann Hematol, 2020 Apr;99(4):729-735.
    PMID: 32078010 DOI: 10.1007/s00277-020-03927-5
    HbE/Beta thalassemia (HbE/β-thalassemia) is one of the common genetic disorders in South East Asia. It is heterogeneous in its clinical presentation and molecular defects. There are genetic modifiers which have been reported to influence the disease severity of this disorder. The aim of this study was to determine the genetic polymorphisms which were responsible for the disease clinical diversity. A case-control study was conducted among Malay transfusion-dependent HbE/β-thalassemia patients. Patients who were confirmed HbE/β-thalassemia were recruited and genotyping study was performed on these subjects. Ninety-eight patients were selected and divided into moderate and severe groups based on clinical parameters using Sripichai scoring system (based on hemoglobin level, spleen size, growth development, the age of first transfusion and age of disease presentation). Forty-three (44.9%) and 55 (56.1%) patients were found to have moderate and severe clinical presentation, respectively. Genotyping analysis was performed using Affymetrix 6.0 microarray platform. The SNPs were filtered using PLINK and Manhattan plot by R software. From the GWAS results, 20 most significant SNPs were selected based on disease severity when compared between moderate and severe groups. The significant SNPs found in this study were mostly related to thalassemia complications such as rs7372408, associated with KCNMB2-AS1 and SNPs associated with disease severity. These findings could be used as genetic predictors in managing patients with HbE/β-thalassemia and served as platform for future study.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links