Displaying all 2 publications

Abstract:
Sort:
  1. Mohamad Zulhafiz Shafiq Zulhilmi Cheng, Maznah Ismail, Kim Wei Chan, Der Jiun Ooi, Norsharina Ismail, Norhasnida Zawawi, et al.
    MyJurnal
    Introduction: In Malaysia, Heterotrigona itama sp. (stingless bee) industries start to grow rapidly since 2015 but the study on its health benefit is still lacking. This study was aimed to analyse and compare the sugar content, minerals and antioxidant properties of stingless bee honey collected from forest and suburban area in Malaysia. Methods: Sugar content was determined by HPLC, minerals and heavy metals was determined by Inductively Coupled Plasma Optical Emission Spectrometer (ICP-OES) and Atomic Absorption Spectrometer (AAS), total phenolic content (TPC) and total flavonoid content (TFC) by Folin-Ciocalteu and aluminium chloride colorimetry method, respectively. For determining the antioxidant activity of the samples, 2,2-diphenyl-1-(2,4,6-trinitrophenyl) hydrazyl (DPPH), 2,2’-azi- no-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) and ferric reducing antioxidant power (FRAP) assay were used. Results: Fructose, glucose and sucrose are found in all samples in range of 16.03-33.13 g/100g, 8.63-20.72 g/100g and 2.68-34.04 g/100g, respectively. Potassium and sodium were major minerals in all stingless bee honey with an average of 622.36 and 496.01 mg/kg, respectively. Sample from the forest (Sibu, F2) has the highest TPC and TFC with value 520.663±8.119µg GAE/g and 443.25±18.194µg RE/g, respectively. The higher antioxidant activities (DPPH, ABTS, FRAP) also found in samples collected from the forest (F2) with 602.15±12.7 µg TE/g, 575.18±9.38 µg TE/g and 641.36±42.11µg TE/g, respectively. Conclusion: All stingless bee honey studied shown a significant amount of important minerals and antioxidant properties with samples from forest clearly shown significantly higher TPC and TFC as well as the antioxidant activity than samples collected from the suburban area.
  2. Adamu HA, Imam MU, Der-Jiun O, Ismail M
    J Nutrigenet Nutrigenomics, 2017;10(1-2):19-31.
    PMID: 28399529 DOI: 10.1159/000469663
    BACKGROUND: Numerous studies have reported on the influence of diet on insulin resistance. Our study provides insight into the effect of germinated brown rice (GBR) and γ-aminobutyric acid (GABA) on early environment-driven programming and susceptibility to insulin resistance in rat offspring.

    METHODS: Male rat offspring from female Sprague-Dawley rats fed with a high-fat diet (HFD) alone, HFD + GBR, or HFD + GABA extract throughout pregnancy and lactation were weaned 4 weeks after delivery and followed up for 8 weeks. A biochemical analysis and an assessment of the hepatic expression of insulin signaling genes were performed.

    RESULTS: The results showed that intrauterine exposure to HFD caused metabolic perturbations in rat offspring which gravitated towards insulin resistance even though the rat offspring did not consume an HFD. GBR and GABA attenuated the HFD-induced changes by underlying regulation of the insulin signaling genes.

    CONCLUSIONS: The results suggest that intake of GBR and GABA during pregnancy and lactation can influence the programming of genes in rat offspring, thereby enhancing insulin sensitivity.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links