This study investigates the performance of biopolymer electrolytes based on chitosan and dextran for energy storage applications. The optimization of ion transport and performance of electric double-layer capacitors EDCL using these electrolytes, incorporating different concentrations of glycerol as a plasticizer and TiO2 as nanoparticles, is explored. Impedance measurements indicate a notable reduction in charge transfer resistance with the addition of TiO2. DC conductivity estimates from AC spectra plateau regions reach up to 5.6 × 10-4 S/cm. The electric bulk resistance Rb obtained from the Nyquist plots exhibits a substantial decrease with increasing plasticizer concentration, further enhanced by the addition of the nanoparticles. Specifically, Rb decreases from ∼20 kΩ to 287 Ω when glycerol concentration increases from 10 % to 40 % and further drops to 30 Ω with the introduction of TiO2. Specific capacitance obtained from cyclic voltammetry shows a notable increase as the scan rate decreases, indicating improved efficiency and stability of ion transport. The TiO2-enriched EDCL achieves 12.3 F/g specific capacitance at 20 mV/s scan rate, with high ion conductivity and extended electrochemical stability. These results suggest the great potential of plasticizer and TiO2 with biopolymers in improving the performance of energy storage systems.
Tuberculosis (TB) in penitentiary services (prisons) is a major challenge to TB control. This review article describes the challenges that prison systems encounter in TB control and provides solutions for the more efficient use of limited resources based on the three pillars of the post-2015 End TB Strategy. This paper also proposes research priorities for TB control in prisons based on current challenges.
The World Health Organization launched a global initiative, known as aDSM (active TB drug safety monitoring and management) to better describe the safety profile of new treatment regimens for drug-resistant tuberculosis (TB) in real-world settings. However, comprehensive surveillance is difficult to implement in several countries. The aim of the aDSM project is to demonstrate the feasibility of implementing national aDSM registers and to describe the type and the frequency of adverse events (AEs) associated with exposure to the new anti-TB drugs. Following a pilot study carried out in 2016, official involvement of TB reference centres/countries into the project was sought and cases treated with bedaquiline- and/or delamanid-containing regimens were consecutively recruited. AEs were prospectively collected ensuring potential attribution of the AE to a specific drug based on its known safety profile. A total of 309 cases were fully reported from 41 centres in 27 countries (65% males; 268 treated with bedaquiline, 20 with delamanid, and 21 with both drugs) out of an estimated 781 cases the participating countries had committed to report by the first quarter of 2019.