Displaying all 4 publications

Abstract:
Sort:
  1. Traub RJ, Irwin P, Dantas-Torres F, Tort GP, Labarthe NV, Inpankaew T, et al.
    Parasit Vectors, 2015 May 13;8:271.
    PMID: 25963851 DOI: 10.1186/s13071-015-0884-4
    This letter advises the imminent formation of the Companion Animal Parasites Council for the Tropics (CAPCT). The CAPCT consists of region-specific (e.g., Asia-Pacific, Latin America and Caribbean, Africa) experts comprising academics, veterinarians, parasitologists, physicians and allied industry partners that will work together to inform, guide and develop best-practice recommendations for the optimal diagnosis, treatment and control of companion animal parasites in the tropics, with the aim of protecting the health of pets and that of the public.
  2. Bezerra-Santos MA, Nguyen VL, Iatta R, Manoj RRS, Latrofa MS, Hodžić A, et al.
    Vet Microbiol, 2021 Apr;255:109037.
    PMID: 33740731 DOI: 10.1016/j.vetmic.2021.109037
    Ehrlichia canis is among the most prevalent tick-borne pathogens infecting dogs worldwide, being primarily vectored by brown dog ticks, Rhipicephalus sanguineus sensu lato (s.l.). The genetic variability of E. canis has been assessed by analysis of different genes (e.g., disulfide bond formation protein gene, glycoprotein 19, tandem repeat protein 36 - TRP36) in the Americas, Africa, Asia, and in a single dog sample from Europe (i.e., Spain). This study was aimed to assess the variations in the TRP36 gene of E. canis detected in naturally infected canids and R. sanguineus s.l. ticks from different countries in Asia and Europe. DNA samples from dogs (n = 644), foxes (n = 146), and R. sanguineus s.l. ticks (n = 658) from Austria, Italy, Iran, Pakistan, India, Indonesia, Malaysia, the Philippines, Singapore, Thailand, Vietnam, and Taiwan were included in this study. Ehrlichia canis 16S rRNA positive samples (n = 115 from the previous studies; n = 14 from Austria in this study) were selected for molecular examination by analyses of TRP36 gene. Out of 129 E. canis 16S rRNA positive samples from dogs (n = 88), foxes (n = 7), and R. sanguineus s.l. ticks (n = 34), the TRP36 gene was successfully amplified from 52. The phylogenetic analysis of the TRP36 pre-repeat, tandem repeat, and post repeat regions showed that most samples were genetically close to the United States genogroup, whereas two samples from Austria and one from Pakistan clustered within the Taiwan genogroup. TRP36 sequences from all samples presented a high conserved nucleotide sequence in the tandem repeat region (from 6 to 20 copies), encoding for nine amino acids (i.e., TEDSVSAPA). Our results confirm the US genogroup as the most frequent group in dogs and ticks tested herein, whereas the Taiwan genogroup was present in a lower frequency. Besides, this study described for the first time the US genogroup in red foxes, thus revealing that these canids share identical strains with domestic dogs and R. sanguineus s.l. ticks.
  3. Dantas-Torres F, Ketzis J, Mihalca AD, Baneth G, Otranto D, Tort GP, et al.
    Vet Parasitol, 2020 Jul;283:109167.
    PMID: 32580071 DOI: 10.1016/j.vetpar.2020.109167
    The Tropical Council for Companion Animal Parasites Ltd. (TroCCAP) is a not-for-profit organisation whose mission is to independently inform, guide and make best-practice recommendations for the diagnosis, treatment and control of companion animal parasites in the tropics and sub-tropics, with the aim of protecting animal and human health. In line with this primary mission, TroCCAP recently developed guidelines for the diagnosis, treatment and control of feline and canine parasites in the tropics. The development of these guidelines required unique and complex considerations to be addressed, often inapplicable to developed nations. Much of the tropics encompass middle-to-low income countries in which poor standards of environmental hygiene and large populations of stray dogs and cats coexist. In these regions, a range of parasites pose a high risk to companion animals, which ultimately may place their owners at risk of acquiring parasitic zoonoses. These considerations led to the development of unique recommendations with regard, for example, to deworming and endoparasite testing intervals for the control of both global and 'region-specific' parasites in the tropics. Moreover, the 'off-' or 'extra'-label use of drugs for the treatment and control of parasitic infections is common practice in many tropical countries and many generic products lack manufacturers' information on efficacy, safety, and quality control. Recommendations and advice concerning the use of such drugs and protocols are also addressed in these guidelines. The formation of these guidelines is an important first step towards improving the education of veterinarians specifically regarding best-practice for the diagnosis, treatment and control of canine and feline parasites in the tropics.
  4. Nguyen VL, Colella V, Greco G, Fang F, Nurcahyo W, Hadi UK, et al.
    Parasit Vectors, 2020 Aug 15;13(1):420.
    PMID: 32799914 DOI: 10.1186/s13071-020-04288-8
    BACKGROUND: Ticks and fleas are considered amongst the most important arthropod vectors of medical and veterinary concern due to their ability to transmit pathogens to a range of animal species including dogs, cats and humans. By sharing a common environment with humans, companion animal-associated parasitic arthropods may potentially transmit zoonotic vector-borne pathogens (VBPs). This study aimed to molecularly detect pathogens from ticks and fleas from companion dogs and cats in East and Southeast Asia.

    METHODS: A total of 392 ticks and 248 fleas were collected from 401 infested animals (i.e. 271 dogs and 130 cats) from China, Taiwan, Indonesia, Malaysia, Singapore, Thailand, the Philippines and Vietnam, and molecularly screened for the presence of pathogens. Ticks were tested for Rickettsia spp., Anaplasma spp., Ehrlichia spp., Babesia spp. and Hepatozoon spp. while fleas were screened for the presence of Rickettsia spp. and Bartonella spp.

    RESULT: Of the 392 ticks tested, 37 (9.4%) scored positive for at least one pathogen with Hepatozoon canis being the most prevalent (5.4%), followed by Ehrlichia canis (1.8%), Babesia vogeli (1%), Anaplasma platys (0.8%) and Rickettsia spp. (1%) [including Rickettsia sp. (0.5%), Rickettsia asembonensis (0.3%) and Rickettsia felis (0.3%)]. Out of 248 fleas tested, 106 (42.7%) were harboring at least one pathogen with R. felis being the most common (19.4%), followed by Bartonella spp. (16.5%), Rickettsia asembonensis (10.9%) and "Candidatus Rickettsia senegalensis" (0.4%). Furthermore, 35 Rhipicephalus sanguineus ticks were subjected to phylogenetic analysis, of which 34 ticks belonged to the tropical and only one belonged to the temperate lineage (Rh. sanguineus (sensu stricto)).

    CONCLUSION: Our data reveals the circulation of different VBPs in ticks and fleas of dogs and cats from Asia, including zoonotic agents, which may represent a potential risk to animal and human health.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links