Production cross sections of the Higgs boson are measured in the H → Z Z → 4 ℓ ( ℓ = e , μ ) decay channel. A data sample of proton-proton collisions at a center-of-mass energy of 13 TeV , collected by the CMS detector at the LHC and corresponding to an integrated luminosity of 137 fb - 1 is used. The signal strength modifier μ , defined as the ratio of the Higgs boson production rate in the 4 ℓ channel to the standard model (SM) expectation, is measured to be μ = 0.94 ± 0.07 (stat) - 0.08 + 0.09 (syst) at a fixed value of m H = 125.38 GeV . The signal strength modifiers for the individual Higgs boson production modes are also reported. The inclusive fiducial cross section for the H → 4 ℓ process is measured to be 2 . 84 - 0.22 + 0.23 (stat) - 0.21 + 0.26 (syst) fb , which is compatible with the SM prediction of 2.84 ± 0.15 fb for the same fiducial region. Differential cross sections as a function of the transverse momentum and rapidity of the Higgs boson, the number of associated jets, and the transverse momentum of the leading associated jet are measured. A new set of cross section measurements in mutually exclusive categories targeted to identify production mechanisms and kinematical features of the events is presented. The results are in agreement with the SM predictions.
The production of Z bosons associated with jets is measured in pp collisions at s=13TeV with data recorded with the CMS experiment at the LHC corresponding to an integrated luminosity of 36.3fb-1. The multiplicity of jets with transverse momentum pT>30GeV is measured for different regions of the Z boson's pT(Z), from lower than 10GeV to higher than 100GeV. The azimuthal correlation Δϕ between the Z boson and the leading jet, as well as the correlations between the two leading jets are measured in three regions of pT(Z). The measurements are compared with several predictions at leading and next-to-leading orders, interfaced with parton showers. Predictions based on transverse-momentum dependent parton distributions and corresponding parton showers give a good description of the measurement in the regions where multiple parton interactions and higher jet multiplicities are not important. The effects of multiple parton interactions are shown to be important to correctly describe the measured spectra in the low pT(Z) regions.
The double differential cross sections of the Drell-Yan lepton pair (ℓ+ℓ-, dielectron or dimuon) production are measured as functions of the invariant mass mℓℓ, transverse momentum pT(ℓℓ), and φη∗. The φη∗ observable, derived from angular measurements of the leptons and highly correlated with pT(ℓℓ), is used to probe the low-pT(ℓℓ) region in a complementary way. Dilepton masses up to 1TeV are investigated. Additionally, a measurement is performed requiring at least one jet in the final state. To benefit from partial cancellation of the systematic uncertainty, the ratios of the differential cross sections for various mℓℓ ranges to those in the Z mass peak interval are presented. The collected data correspond to an integrated luminosity of 36.3fb-1 of proton-proton collisions recorded with the CMS detector at the LHC at a centre-of-mass energy of 13TeV. Measurements are compared with predictions based on perturbative quantum chromodynamics, including soft-gluon resummation.
New sets of parameter tunes for two of the colour reconnection models, quantum chromodynamics-inspired and gluon-move, implemented in the pythia 8 event generator, are obtained based on the default CMS pythia 8 underlying-event tune, CP5. Measurements sensitive to the underlying event performed by the CMS experiment at centre-of-mass energies s=7 and 13TeV, and by the CDF experiment at 1.96TeV are used to constrain the parameters of colour reconnection models and multiple-parton interactions simultaneously. The new colour reconnection tunes are compared with various measurements at 1.96, 7, 8, and 13TeV including measurements of the underlying-event, strange-particle multiplicities, jet substructure observables, jet shapes, and colour flow in top quark pair (tt¯) events. The new tunes are also used to estimate the uncertainty related to colour reconnection modelling in the top quark mass measurement using the decay products of tt¯ events in the semileptonic channel at 13TeV.
A search for charged Higgs bosons produced in vector boson fusion processes and decaying into vector bosons, using proton-proton collisions at s = 13 TeV at the LHC, is reported. The data sample corresponds to an integrated luminosity of 137 fb - 1 collected with the CMS detector. Events are selected by requiring two or three electrons or muons, moderate missing transverse momentum, and two jets with a large rapidity separation and a large dijet mass. No excess of events with respect to the standard model background predictions is observed. Model independent upper limits at 95% confidence level are reported on the product of the cross section and branching fraction for vector boson fusion production of charged Higgs bosons as a function of mass, from 200 to 3000 GeV . The results are interpreted in the context of the Georgi-Machacek model.