In this study the environmental impact of consolidated rice farms (CF) - farms which have been integrated to increase the mechanization index - and traditional farms (TF) - small farms with lower mechanization index - in Guilan Province, Iran, were evaluated and compared using Life cycle assessment (LCA) methodology and adaptive neuro-fuzzy inference system (ANFIS). Foreground data were collected from farmers using face-to-face questionnaires and background information about production process and inventory data was taken from the EcoInvent®2.0 database. The system boundary was confined to within the farm gate (cradle to farm gate) and two functional units (land and mass based) were chosen. The study also included a comparison of the input-output energy flows of the farms. The results revealed that the average amount of energy consumed by the CFs was 57 GJ compared to 74.2 GJ for the TFs. The energy ratios for CFs and TFs were 1.6 and 0.9, respectively. The LCA results indicated that CFs produced fewer environmental burdens per ton of produced rice. When compared according to the land-based FU the same results were obtained. This indicates that the differences between the two types of farms were not caused by a difference in their production level, but rather by improved management on the CFs. The analysis also showed that electricity accounted for the greatest share of the impact for both types of farms, followed by P-based and N-based chemical fertilizers. These findings suggest that the CFs had superior overall environmental performance compared to the TFs in the study area. The performance metrics of the model based on ANFIS show that it can be used to predict the environmental burdens of rice production with high accuracy and minimal error.
A search is presented for baryon number violating interactions in top quark production and decay. The analysis uses data from proton-proton collisions at a center-of-mass energy of 13 TeV, collected with the CMS detector at the LHC with an integrated luminosity of 138 fb^{-1}. Candidate events are selected by requiring two oppositely charged leptons (electrons or muons) and exactly one jet identified as originating from a bottom quark. Multivariate discriminants are used to separate the signal from the background. No significant deviation from the standard model prediction is observed. Upper limits are placed on the strength of baryon number violating couplings. For the first time the production of single top quarks via baryon number violating interactions is studied. This allows the search to set the most stringent constraints to date on the branching fraction of the top quark decay to a lepton, an up-type quark (u or c), and a down-type quark (d, s, or b). The results improve the previous bounds by 3 to 6 orders of magnitude based on the fermion flavor combination of the baryon number violating interactions.
The first search for soft unclustered energy patterns (SUEPs) is performed using an integrated luminosity of 138 fb^{-1} of proton-proton collision data at sqrt[s]=13 TeV, collected in 2016-2018 by the CMS detector at the LHC. Such SUEPs are predicted by hidden valley models with a new, confining force with a large 't Hooft coupling. In events with boosted topologies, selected by high-threshold hadronic triggers, the multiplicity and sphericity of clustered tracks are used to reject the background from standard model quantum chromodynamics. With no observed excess of events over the standard model expectation, limits are set on the cross section for production via gluon fusion of a scalar mediator with SUEP-like decays.