Displaying all 2 publications

Abstract:
Sort:
  1. Ong SQ, Dawood MM, Rahman H, Alias MF, Moideen MA, Lee PC, et al.
    MethodsX, 2024 Jun;12:102563.
    PMID: 38328504 DOI: 10.1016/j.mex.2024.102563
    Mosquito-borne diseases pose a significant threat in many Southeast Asian countries, particularly through the sylvatic cycle, which has a wildlife reservoir in forests and rural areas. Studying the composition and diversity of vectors and pathogen transmission is especially challenging in forests and rural areas due to their remoteness, limited accessibility, lack of power, and underdeveloped infrastructure. This study is based on the WHO mosquito sampling protocol, modifies technical details to support mosquito collection in difficult-to-access and resource-limited areas. Specifically, we describe the procedure for using rechargeable lithium batteries and solar panels to power the mosquito traps, demonstrate a workflow for processing and storing the mosquitoes in a -20 °C freezer, data management tools including microclimate data, and quality assurance processes to ensure the validity and reliability of the results. A pre- and post-test was utilized to measure participant knowledge levels. Additional research is needed to validate this protocol for monitoring vector-borne diseases in hard-to-reach areas within other countries and settings.
  2. Braima KA, Piera KA, Lubis IN, Noviyanti R, Rajahram GS, Kariodimedjo P, et al.
    medRxiv, 2024 Apr 06.
    PMID: 38633782 DOI: 10.1101/2024.04.04.24305339
    BACKGROUND: Zoonotic P. knowlesi and P. cynomolgi symptomatic and asymptomatic infections occur across endemic areas of Southeast Asia. Most infections are low-parasitemia, with an unknown proportion below routine microscopy detection thresholds. Molecular surveillance tools optimizing the limit of detection (LOD) would allow more accurate estimates of zoonotic malaria prevalence.

    METHODS: An established ultra-sensitive Plasmodium genus quantitative-PCR (qPCR) assay targeting the 18S rRNA gene underwent LOD evaluation with and without reverse transcription (RT) for P. knowlesi, P. cynomolgi and P. vivax using total nucleic acid preserved (DNA/RNA Shield™) isolates and archived dried blood spots (DBS). LODs for selected P. knowlesi-specific assays, and reference P. vivax- and P. cynomolgi-specific assays were determined with RT. Assay specificities were assessed using clinical malaria samples and malaria-negative controls.

    RESULTS: The use of reverse transcription improved Plasmodium species detection by up to 10,000-fold (Plasmodium genus), 2759-fold (P. knowlesi), 1000-fold (P. vivax) and 10-fold (P. cynomolgi). The median LOD with RT for the Kamau et al. Plasmodium genus RT-qPCR assay was ≤0.0002 parasites/μL for P. knowlesi and 0.002 parasites/μL for both P. cynomolgi and P. vivax. The LODs with RT for P. knowlesi-specific PCRs were: Imwong et al. 18S rRNA (0.0007 parasites/μL); Divis et al. real-time 18S rRNA (0.0002 parasites/μL); Lubis et al. hemi-nested SICAvar (1.1 parasites/μL) and Lee et al. nested 18S rRNA (11 parasites/μL). The LOD for P. vivax- and P. cynomolgi-specific assays with RT were 0.02 and 0.20 parasites/μL respectively. For DBS P. knowlesi samples the median LOD for the Plasmodium genus qPCR with RT was 0.08, and without RT was 19.89 parasites/uL (249-fold change); no LOD improvement was demonstrated in DBS archived beyond 6 years. The Plasmodium genus and P. knowlesi-assays were 100% specific for Plasmodium species and P. knowlesi detection, respectively, from 190 clinical infections and 48 healthy controls. Reference P. vivax-specific primers demonstrated known cross-reactivity with P. cynomolgi.

    CONCLUSION: Our findings support the use of an 18S rRNA Plasmodium genus qPCR and species-specific nested PCR protocol with RT for highly-sensitive surveillance of zoonotic and human Plasmodium species infections.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links