Displaying all 4 publications

Abstract:
Sort:
  1. Chew FN, Tan WS, Tey BT
    J Biosci Bioeng, 2011 Feb;111(2):246-8.
    PMID: 21036662 DOI: 10.1016/j.jbiosc.2010.10.004
    A gel imaging method was employed to quantitate the GFP that had been subjected to denaturation and degradation treatments. This method is able to differentiate the nativity of GFP by relating the observed changes in the position of fluorescent bands which is unable to be detected using the spectrofluorometric method.
  2. Chew FN, Tan WS, Boo HC, Tey BT
    Prep Biochem Biotechnol, 2012;42(6):535-50.
    PMID: 23030465 DOI: 10.1080/10826068.2012.660903
    An optimized cultivation condition is needed to maximize the functional green fluorescent protein (GFP) production. Six process variables (agitation rate, temperature, initial medium pH, concentration of inducer, time of induction, and inoculum density) were screened using the fractional factorial design. Three variables (agitation rate, temperature, and time of induction) exerted significant effects on functional GFP production in E. coli shake flask cultivation and were optimized subsequently using the Box-Behnken design. An agitation rate of 206 rpm at 31°C and induction of the protein expression when the cell density (OD(600nm)) reaches 1.04 could enhance the yield of functional GFP production from 0.025 g/L to 0.241 g/L, which is about ninefold higher than the unoptimized conditions. Unoptimized cultivation conditions resulted in protein aggregation and hence reduced the quantity of functional GFP. The model and regression equation based on the shake flask cultivation could be applied to a 2-L bioreactor for maximum functional GFP production.
  3. Chew FN, Tan WS, Ling TC, Tey BT
    Electrophoresis, 2009 Sep;30(17):3017-3023.
    PMID: 19685471 DOI: 10.1002/elps.200900246
    Mechanical and non-mechanical breakages of bacterial cells are usually the preliminary steps in intracellular protein purification. In this study, the recombinant green fluorescent protein (GFP) was purified from intact Escherichia coli cells using preparative PAGE. In this purification process, cells disruption step is not needed. The cellular content of E. coli was drifted out electrically from cells and the negatively charged GFP was further electroeluted from polyacrylamide gel column. SEM investigation of the electrophoresed cells revealed substantial structural damage at the cellular level. This integrated purification technique has successfully recovered the intracellular GFP with a yield of 82% and purity of 95%.
  4. Chew FN, Tan WS, Ling TC, Tan CS, Tey BT
    Anal Biochem, 2009 Jan 15;384(2):353-5.
    PMID: 18952038 DOI: 10.1016/j.ab.2008.10.010
    Green fluorescent protein (GFP) is a versatile reporter protein and has been widely used in biological research. However, its quantitation requires expensive equipment such as a spectrofluorometer. In the current study, a gel documentation imaging system using a native polyacrylamide gel for the quantitation of GFP was developed. The assay was evaluated for its precision, linearity, reproducibility, and sensitivity in the presence of Escherichia coli cells and was compared with the spectrofluorometric method. Using this newly established, gel-based imaging technique; the amount of GFP can be quantified accurately.
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links