METHODS: We used the Pan-Asian Trauma Outcome Study registry to analyze a retrospective cohort of 963 trauma patients who received surgical intervention or transarterial embolization within 2 h of injury in Asian countries between January 2016 and December 2020. Exposure measurement was recorded every 30 min from injury to definitive care. The 30 day mortality rate and functional outcome were studied using the Modified Rankin Scale ratings of 0-3 vs 4-6 for favorable vs poor functional outcomes, respectively. Subgroup analyses of different injury severities and patterns were performed.
RESULTS: The mean time from injury to definitive care was 1.28 ± 0.69 h, with cases categorized into the following subgroups:
METHODS: We reanalyzed the empirical data from the Health Insurance Plan trial in 1963 to the UK age trial in 1991 and their follow-up data published until 2015. We first performed Bayesian conjugated meta-analyses on the heterogeneity of attendance rate, sensitivity, and over-detection and their impacts on advanced stage breast cancer and death from breast cancer across trials using Bayesian Poisson fixed- and random-effect regression model. Bayesian meta-analysis of causal model was then developed to assess a cascade of causal relationships regarding the impact of both attendance and sensitivity on 2 main outcomes.
RESULTS: The causes of heterogeneity responsible for the disparities across the trials were clearly manifested in 3 components. The attendance rate ranged from 61.3% to 90.4%. The sensitivity estimates show substantial variation from 57.26% to 87.97% but improved with time from 64% in 1963 to 82% in 1980 when Bayesian conjugated meta-analysis was conducted in chronological order. The percentage of over-detection shows a wide range from 0% to 28%, adjusting for long lead-time. The impacts of the attendance rate and sensitivity on the 2 main outcomes were statistically significant. Causal inference made by linking these causal relationships with emphasis on the heterogeneity of the attendance rate and sensitivity accounted for the variation in the reduction of advanced breast cancer (none-30%) and of mortality (none-31%). We estimated a 33% (95% CI: 24-42%) and 13% (95% CI: 6-20%) breast cancer mortality reduction for the best scenario (90% attendance rate and 95% sensitivity) and the poor scenario (30% attendance rate and 55% sensitivity), respectively.
CONCLUSION: Elucidating the scenarios from high to low performance and learning from the experiences of these trials helps screening policy-makers contemplate on how to avoid errors made in ineffective studies and emulate the effective studies to save women lives.
METHODS: The authors evaluated a cohort of adult trauma patients transported to emergency departments. The first vital signs were used to calculate the SI, MSI, and rSIG. The areas under the receiver operating characteristic curves and test results were used to compare the discriminant performance of the indices on short-term mortality and poor functional outcomes. A subgroup analysis of geriatric patients with traumatic brain injury, penetrating injury, and nonpenetrating injury was performed.
RESULTS: A total of 105 641 patients (49±20 years, 62% male) met the inclusion criteria. The rSIG had the highest areas under the receiver operating characteristic curve for short-term mortality (0.800, CI: 0.791-0.809) and poor functional outcome (0.596, CI: 0.590-0.602). The cutoff for rSIG was 18 for short-term mortality and poor functional outcomes with sensitivities of 0.668 and 0.371 and specificities of 0.805 and 0.813, respectively. The positive predictive values were 9.57% and 22.31%, and the negative predictive values were 98.74% and 89.97%. rSIG also had better discriminant ability in geriatrics, traumatic brain injury, and nonpenetrating injury.
CONCLUSION: The rSIG with a cutoff of 18 was accurate for short-term mortality in Asian adult trauma patients. Moreover, rSIG discriminates poor functional outcomes better than the commonly used SI and MSI.