The nanoenvironment of nanobiocatalysts, such as local hydrophobicity, pH and charge density, plays a significant role in optimizing the enzymatic selectivity and specificity. In this study, Kluyveromyces lactis β-galactosidase (Gal) was assembled onto polystyrene nanofibers (PSNFs) to form PSNF-Gal nanobiocatalysts. We proposed that local hydrophobicity on the nanofiber surface could expel water molecules so that the transgalactosylation would be preferable over hydrolysis during the bioconversion of lactose, thus improve the galacto-oligosaccharides (GOS) yield. PSNFs were fabricated by electro-spinning and the operational parameters were optimized to obtain the nanofibers with uniform size and ordered alignment. The resulting nanofibers were functionalized for enzyme immobilization through a chemical oxidation method. The functionalized PSNF improved the enzyme adsorption capacity up to 3100mg/g nanofiber as well as enhanced the enzyme stability with 80% of its original activity. Importantly, the functionalized PSNF-Gal significantly improved the GOS yield and the production rate was up to 110g/l/h in comparison with 37g/l/h by free β-galactosidase. Our research findings demonstrate that the localized nanoenvironment of the PSNF-Gal nanobiocatalysts favour transgalactosylation over hydrolysis in lactose bioconversion.
Poor postharvest handling, microbial infestation, and high respiration rate are some the factors are responsible for poor storage life of perishable commodities. Therefore, effective preservation of these commodities is needed to lower the damages and extend shelf life. Preservation is regarded as the action taken to maintain desired properties of a perishable commodity as long as possible. Persimmon (Diospyros kaki) is perishable fruit with high nutritive value; however, has very short shelf-life. Therefore, effective preservation and drying is needed to extend its storage life. Drying temperature and preservatives significantly influence the quality of perishable vegetables and fruits during drying. The current study investigated the effect of different temperatures and preservatives on drying kinetics and organoleptic quality attributes of persimmon. Persimmon fruits were treated with preservatives (25% honey, 25% aloe vera, 2% sodium benzoate, 1% potassium metabisulfite, and 2% citric acid solutions) under different drying temperatures (40, 45, and 50°C). All observed parameters were significantly affected by individual effects of temperatures and preservatives, except ash contents. Similarly, interactive effects were significant for all parameters except total soluble sugars, ash contents, and vitamin C. Generally, fruits treated with citric acid and dried under 50°C had 8.2% moisture loss hour-1, 14.9 drying hours, 0.030 g H2O g-1 hr-1, 1.23° Brix of total soluble solids, 6.71 pH, 1.35% acidity, and 6.3 mg vitamin C. These values were better than the rest of the preservatives and drying temperatures used in the study. Therefore, treating fruits with citric acid and drying at 50°C was found a promising technique to extend storage life of persimmon fruits. It is recommended that persimmon fruits dried at 50°C and preserved in citric acid can be used for longer storage period.