Wayfinding ability in older adults with Alzheimer's disease (AD) is progressively impaired due to ageing and deterioration of cognitive domains. Usually, the sense of direction is deteriorated as visuospatial and spatial cognition are associated with the sensory acuity. Therefore, navigation systems that support only visual interactions may not be appropriate in case of AD. This paper presents a concept of wearable navigation device that integrates the haptic-feedback technology to facilitate the wayfinding of individuals with AD. The system provides the simplest instructions; left/right using haptic signals, as to avoid users' distraction during navigation. The advantages of haptic/tactile modality for wayfinding purpose based on several significant studies are presented. As preliminary assessment, a survey is conducted to understand the potential of this design concept in terms of (1) acceptability, (2) practicality, (3) wearability, and (4) environmental settings. Results indicate that the concept is highly acceptable and commercially implementable. A working prototype will be developed based on the results of the preliminary assessment. Introducing a new method of navigation should be followed by continuous practices for familiarization purpose. Improved navigability allows the good performance of activities of daily living (ADLs) hence maintain the good quality of life in older adults with AD.
The integration of sustainable practices within manufacturing organizations has become a necessity. However, ensuring a competitive edge in the market remains pivotal for the success of these sustainability initiatives. This research introduces an approach to harmonize the influence of sustainability and agility within the product development process, enabling enterprises to pursue sustainable manufacturing while upholding robust market competitiveness. The significance of this study lies in its combined utilization of expert insights and mathematical techniques to gauge the components and sub-components of sustainability and agility, thereby enhancing the precision of assessment outcomes. This accomplishment was achieved through the application of a Weighted Fuzzy Assessment Method (WFAM) for evaluating both product sustainability and agility. Employing the Fuzzy Analytic Hierarchy Process (FAHP), the study assigned weights to elements and sub-elements. Subsequently, employing fuzzy logic based on these derived weights, the study assessed the sustainability and agility scores in the product development process. Demonstrating the effectiveness of this devised methodology, the research employed a multi-functional electric bicycle as a case study. The outcomes highlight the potential the proposed method in attaining the varied objectives of sustainability and agility in product development.
The importance of incorporating an agile approach into creating sustainable products has been widely discussed. This approach can enhance innovation integration, improve adaptability to changing development circumstances, and increase the efficiency and quality of the product development process. While many agile methods have originated in the software development context and have been formulated based on successful software projects, they often fail due to incorrect procedures and a lack of acceptance, preventing deep integration into the process. Additionally, decision-making for market evaluation is often hindered by unclear and subjective information. Therefore, this study introduces an extended TOPSIS (Technique for Order Performance by Similarity to Ideal Solution) method for sustainable product development. This method leverages the benefits of cloud model theory to address randomness and uncertainty (intrapersonal uncertainty) and the advantages of rough set theory to flexibly handle market demand uncertainty without requiring extra information. The study proposes an integrated weighting method that considers both subjective and objective weights to determine comprehensive criteria weights. It also presents a new framework, named Sustainable Agility of Product Development (SAPD), which aims to evaluate criteria for assessing sustainable product development. To validate the effectiveness of this proposed method, a case study is conducted on small and medium enterprises in China. The obtained results show that the company needs to conduct product structure research and development to realize new product functions.
Objectives. The prevalence rate of work-related musculoskeletal disorders (WMSDs) globally is notably high. There are a limited number of studies investigating WMSDs and their associated risk factors. However, there are currently no data available for WMSDs among industrial workers in Peninsular Malaysia. This study aimed to identify the prevalence of WMSDs and associated risk factors among industrial workers experiencing WMSDs through their daily working tasks. Methods. A quantitative study using a questionnaire was conducted among industrial workers from rehabilitation centres and factories in Peninsular Malaysia. The analysis of 232 participant narratives aimed to identify the correlation between job tasks and musculoskeletal pain, especially in case of repetitive and heavy handling tasks. Results. The prevalence of WMSDs among industrial workers stands at 93.1%. The results also indicate that the most affected part of the body was the lower back, with 62.1% for 7 days or more in the last year, caused by industrial workers' job tasks. The prominent risk factors associated with body parts include gender, age, working hours and most difficult tasks with MSDs, especially in the lower back. Conclusion. This survey helps us to understand whether the workers are experiencing any discomfort, pain or disability related to workplace activities.