Displaying all 7 publications

Abstract:
Sort:
  1. Chai AWY, Lim KP, Cheong SC
    Semin Cancer Biol, 2020 04;61:71-83.
    PMID: 31542510 DOI: 10.1016/j.semcancer.2019.09.011
    Oral squamous cell carcinomas (OSCC) are a heterogeneous group of cancers arising from the mucosal lining of the oral cavity. A majority of these cancers are associated with lifestyle risk habits including smoking, excessive alcohol consumption and betel quid chewing. Cetuximab, targeting the epidermal growth factor receptor was approved for the treatment of OSCC in 2006, and remains the only molecular targeted therapy available for OSCC. Here, we reviewed the current findings from genomic analyses of OSCC and discuss how these studies inform on the biological mechanisms underlying OSCC. Exome sequencing revealed that the significantly mutated genes are mainly tumour suppressors. Mutations in FAT1, CASP8, CDKN2A, and NOTCH1 are more frequently found in OSCC when compared to non-OSCC head and neck cancers and other squamous cell carcinomas, and HRAS and PIK3CA are the only significantly mutated oncogenes. The distribution of these mutations also differs in populations with distinct risk habits. Gene expression-based molecular classification showed that OSCC can be divided into distinct subtypes and these have a preferential response to different types of therapies, suggesting that these classifications could have clinical implications. More recently, with the approval of checkpoint inhibitors for the treatment of cancers including OSCC, genomics studies also dissected the genetic signatures of the immune compartment to delineate immune-active and -exhausted subtypes that could inform on the immune status of OSCC patients and guide the development of novel therapies to improve response to immunotherapy. Taken together, genomics studies are informing on the biology of both the epithelial and stromal compartments underlying OSCC development, and we discuss the opportunities and challenges in using these to derive clinical benefit for OSCC patients.
  2. Chai AWY, Tan AC, Cheong SC
    Sci Rep, 2021 12 14;11(1):23933.
    PMID: 34907286 DOI: 10.1038/s41598-021-03418-1
    Effective treatment options for head and neck squamous cell carcinoma (HNSCC) are currently lacking. We exploited the drug response and genomic data of the 28 HNSCC cell lines, screened with 4,518 compounds, from the PRISM repurposing dataset to uncover repurposing drug candidates for HNSCC. A total of 886 active compounds, comprising of 418 targeted cancer, 404 non-oncology, and 64 chemotherapy compounds were identified for HNSCC. Top classes of mechanism of action amongst targeted cancer compounds included PI3K/AKT/MTOR, EGFR, and HDAC inhibitors. We have shortlisted 36 compounds with enriched killing activities for repurposing in HNSCC. The integrative analysis confirmed that the average expression of EGFR ligands (AREG, EREG, HBEGF, TGFA, and EPGN) is associated with osimertinib sensitivity. Novel putative biomarkers of response including those involved in immune signalling and cell cycle were found to be associated with sensitivity and resistance to MEK inhibitors respectively. We have also developed an RShiny webpage facilitating interactive visualization to fuel further hypothesis generation for drug repurposing in HNSCC. Our study provides a rich reference database of HNSCC drug sensitivity profiles, affording an opportunity to explore potential biomarkers of response in prioritized drug candidates. Our approach could also reveal insights for drug repurposing in other cancers.
  3. Chai AWY, Tan YH, Ooi S, Yee PS, Yee SM, Cheong SC
    Heliyon, 2024 Nov 15;10(21):e39677.
    PMID: 39524880 DOI: 10.1016/j.heliyon.2024.e39677
    Oral squamous cell carcinoma (OSCC) is known to be driven by multiple intricated receptor tyrosine kinases (RTKs) including EGFR, PI3K/AKT and MAPK signaling pathways. However, whilst targeting EGFR with cetuximab has been approved for the treatment of OSCC, other single-agent inhibitors of the RTKs have shown modest effects in improving survival. From the genome-wide CRISPR/Cas9 screen on 21 OSCC cell lines, we have identified PTPN11 among the top essential genes in OSCC. PTPN11 encodes for SHP2, a phosphatase that acts as a master signal transducer, downstream of various RTKs. Although PTPN11 overexpression has been reported in OSCC, little is known about its role as an essential gene for OSCC survival and its potential as a therapeutic target. Herein, we confirmed that PTPN11 is an essential gene in OSCC where its deletion significantly impacted cell survival. We evaluated three SHP2 inhibitors on 21 OSCC cell lines and found TNO155 to be significantly associated with CRISPR dependency score. We showed that TNO155 caused dose-dependent suppression on p-ERK and p-MEK, and suppresses the JAK/STAT pathway via downregulating p-JAK1, p-STAT1, p-STAT3. Furthermore, we confirmed that the combination of the mTOR inhibitor, everolimus with TNO155 is synergistic in OSCC. In summary, PTPN11 is a promising therapeutic target in OSCC that can be selectively targeted by SHP2 inhibitor such as TNO155. Our findings on the use of mTOR inhibitor, everolimus to overcome resistance to TNO155 are essential to inform on next phases of clinical trials which is warranted for the treatment of OSCC.
  4. Chai AWY, Tan YH, Ooi S, Yee PS, Yee SM, Lightfoot H, et al.
    Cancer Res Commun, 2024 Nov 01;4(11):2919-2932.
    PMID: 39360810 DOI: 10.1158/2767-9764.CRC-24-0136
    Mechanistically guided drug repurposing has been made possible by systematically integrating pharmacologic and CRISPR-Cas9 screen data. Our study discovers the biomarker and cell death mechanisms underpinning sensitivity toward AZD5582, an antagonist of the inhibitor of apoptosis family protein. Our findings have important implications for improving future trial design for patients with OSCC using this emerging drug class.
  5. Cheong SC, Selvam B, Ho GF, Muhamad Nor I, Tan CK, Wong YF, et al.
    BMJ Open, 2024 Dec 03;14(12):e076898.
    PMID: 39627139 DOI: 10.1136/bmjopen-2023-076898
    INTRODUCTION: Treatment combination of pembrolizumab plus platinum and 5-fluorouracil (PF) has increased the survival of recurrent or metastatic (R/M) head and neck squamous cell carcinoma (HNSCC). The combination of platinum and gemcitabine (PG) has been shown to be superior to PF in the treatment of R/M nasopharyngeal carcinoma patients. Therefore, we hypothesise that the combination of pembrolizumab with PG would be comparable to pembrolizumab with PF as a first-line treatment in R/M HNSCC.

    METHODS AND ANALYSIS: This is an open-label, multicentre, single-arm, phase 2 study of pembrolizumab plus PG for first-line treatment in subjects with R/M HNSCC in Malaysia. The study is conducted using the Optional Simon optimal 2-stage design. At the initial stage, 26 subjects will be enrolled and if seven or more patients achieve an objective response rate (ORR), then 63 patients will be enrolled. Subjects will be given pembrolizumab 200 mg3 every 3 weeks up to 35 cycles in combination with chemotherapy for up to six cycles of platinum (either cisplatin at 35 mg/m2 intravenous on day 1 and day 8 or carboplatin at area under the curve 5 intravenous on day 1 of each 3-week cycle) and gemcitabine at 1250 mg/m2 intravenous on days 1 and 8 of a 3-week cycle. The primary end point is the ORR as per Response Evaluation Criteria in Solid Tumors 1.1. Secondary end points include the overall survival, progression free survival, response duration and safety. The exploratory objectives include relationships of microbiome profiles, prognostic and predictive biomarkers with the clinical responses.

    ETHICS AND DISSEMINATION: The study was approved by the ethics committee of the University Malaya Medical Centre (202213-10884). Findings will be disseminated through conference presentations and peer review publications.

    TRIAL REGISTRATION NUMBER: ClinicalTrials.gov (www.

    CLINICALTRIAL: gov); NCT05286619.

  6. Chai AWY, Yee PS, Price S, Yee SM, Lee HM, Tiong VK, et al.
    Elife, 2020 09 29;9.
    PMID: 32990596 DOI: 10.7554/eLife.57761
    New therapeutic targets for oral squamous cell carcinoma (OSCC) are urgently needed. We conducted genome-wide CRISPR-Cas9 screens in 21 OSCC cell lines, primarily derived from Asians, to identify genetic vulnerabilities that can be explored as therapeutic targets. We identify known and novel fitness genes and demonstrate that many previously identified OSCC-related cancer genes are non-essential and could have limited therapeutic value, while other fitness genes warrant further investigation for their potential as therapeutic targets. We validate a distinctive dependency on YAP1 and WWTR1 of the Hippo pathway, where the lost-of-fitness effect of one paralog can be compensated only in a subset of lines. We also discover that OSCCs with WWTR1 dependency signature are significantly associated with biomarkers of favorable response toward immunotherapy. In summary, we have delineated the genetic vulnerabilities of OSCC, enabling the prioritization of therapeutic targets for further exploration, including the targeting of YAP1 and WWTR1.
  7. Chai AWY, Yee SM, Lee HM, Abdul Aziz N, Yee PS, Marzuki M, et al.
    Cancer Res Commun, 2024 Mar 04;4(3):645-659.
    PMID: 38358347 DOI: 10.1158/2767-9764.CRC-23-0341
    Nasopharyngeal carcinoma (NPC), a cancer that is etiologically associated with the Epstein-Barr virus (EBV), is endemic in Southern China and Southeast Asia. The scarcity of representative NPC cell lines owing to the frequent loss of EBV episomes following prolonged propagation and compromised authenticity of previous models underscores the critical need for new EBV-positive NPC models. Herein, we describe the establishment of a new EBV-positive NPC cell line, designated NPC268 from a primary non-keratinizing, differentiated NPC tissue. NPC268 can undergo productive lytic reactivation of EBV and is highly tumorigenic in immunodeficient mice. Whole-genome sequencing revealed close similarities with the tissue of origin, including large chromosomal rearrangements, while whole-genome bisulfite sequencing and RNA sequencing demonstrated a hypomethylated genome and enrichment in immune-related pathways, respectively. Drug screening of NPC268 together with six other NPC cell lines using 339 compounds, representing the largest high-throughput drug testing in NPC, revealed biomarkers associated with specific drug classes. NPC268 represents the first and only available EBV-positive non-keratinizing differentiated NPC model, and extensive genomic, methylomic, transcriptomic, and drug response data should facilitate research in EBV and NPC, where current models are limited.

    SIGNIFICANCE: NPC268 is the first and only EBV-positive cell line derived from a primary non-keratinizing, differentiated nasopharyngeal carcinoma, an understudied but important subtype in Southeast Asian countries. This model adds to the limited number of authentic EBV-positive lines globally that will facilitate mechanistic studies and drug development for NPC.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links